【題目】△ABC在直角坐標系中的位置如圖,其中A點的坐標是(﹣2,3)
(1)△ABC繞點O順時針旋轉(zhuǎn)90°得到△A1B1C1,請作出△A1B1C1,并寫出A點的對應點A1的坐標;
(2)若△ABC經(jīng)過平移后A點的對應點A2的坐標是(2,﹣1),請作△A2B2C2,并計算平移的距離.
【答案】(1)圖詳見解析,A1的坐標為(3,2);(2)圖詳見解析,平移的距離為4.
【解析】
(1)分別作出三頂點繞點O順時針旋轉(zhuǎn)90°得到的對應點,再順次連接即可得;
(2)將三頂點分別向右平移4個單位,再向下平移4個單位得到對應點,繼而首順次連接即可得.
解:(1)分別作出A、B、C繞點O順時針旋轉(zhuǎn)90°得到的A1、B1、C1,再順次連接A1B1、A1C1、B1C1如圖所示,△A1B1C1即為所求,
A點的對應點A1的坐標為(3,2);
(2)由點A(﹣2,3)平移到對應點A2(2,﹣1)的平移規(guī)律為:向右平移4個單位,再向下平移4個單位
∴將點B和點C也向右平移4個單位,再向下平移4個單位得到B2、C2,連接A2B2、A2C2、B2C2,如圖所示,△A2B2C2即為所求,平移的距離AA2==4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點C,BD平分∠ABF,且交AE于點D,AC與BD相交于點O,連接CD
(1)求∠AOD的度數(shù);
(2)求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩個倉庫要向A、B兩地運送水泥,已知甲庫可調(diào)出100噸水泥,乙?guī)炜烧{(diào)出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫到A,B兩地的路程和運費如下表(表中運費欄“元/(噸、千米)”表示每噸水泥運送1千米所需人民幣)(本題滿分10分)
路程/千米 | 運費(元/噸、千米) | |||
甲庫 | 乙?guī)?/span> | 甲庫 | 乙?guī)?/span> | |
A地 | 20 | 15 | 12 | 12 |
B地 | 25 | 20 | 10 | 8 |
(1)設甲庫運往A地水泥噸,求總運費(元)關于(噸)的函數(shù)關系式;
(2)當甲、乙兩庫各運往A、B兩地多少噸水泥時,總運費最。孔钍〉目傔\費是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AC、BD相交于點O,過點A作BD的平行線AE交CB的延長線于點E.
(1)求證:BE=BC;
(2)過點C作CF⊥BD于點F,并延長CF交AE于點G,連接OG.若BF=3,CF=6,求四邊形BOGE的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1,直線與x軸、y軸分別交于點A、C兩點,點B的橫坐標為2.
圖1 圖2
(1)求A、C兩點的坐標和拋物線的函數(shù)關系式;
(2)點D是直線AC上方拋物線上任意一點,P為線段AC上一點,且S△PCD=2S△PAD ,求點P的坐標;
(3)如圖2,另有一條直線y=-x與直線AC交于點M,N為線段OA上一點,∠AMN=∠AOM.點Q為x軸負半軸上一點,且點Q到直線MN和直線MO的距離相等,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a+b=1,ab=﹣1,設S1=a+b,S2=a2+b2,S3=a3+b3,…,Sn=an+bn
(1)計算S2.
(2)請閱讀下面計算S3的過程:
∵a+b=1,ab=﹣1
∴S3=a3+b3=(a+b)(a2+b2)﹣ab(a+b)=1×S2﹣(﹣1)=S2+1= .
你讀懂了嗎?請你先填空完成(2)中S3的計算結(jié)果,再用你學到的方法計算S4
(3)試寫出Sn﹣2,Sn﹣1,Sn三者之間的數(shù)量關系式(不要求證明,且n是不小于2的自然數(shù)),根據(jù)得出的數(shù)量關系計算S7.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC邊于點D.以AB上一點O為圓心作⊙O,使⊙O經(jīng)過點A和點D.
(1)判斷直線BC與⊙O的位置關系,并說明理由;
(2)若AC=3,∠B=30°,設⊙O與AB邊的另一個交點為E,求線段BD,BE與劣弧所圍成的陰影部分的面積(結(jié)果保留根號和)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖(1),在平行四邊形ABCD中,DE⊥AB,BF⊥CD,垂足分別為E、F,求證:AE=CF;
(2)如圖(2),在平行四邊形ABCD中,AC、BD是兩條對角線,求證AC2+BD2=2(AB2+BC2)
(3)如圖(3),PQ是△PMN的中線,若PM=11,PN=13,MN=10,求出PQ的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com