【題目】反比例函數(shù)和一次函數(shù)y=k2x+b的圖象交于點M(3,﹣)和點N(﹣1,2),則k1=_____,k2=____,一次函數(shù)的圖象交x軸于點_____

【答案】﹣2﹣(2,0)

【解析】

由兩函數(shù)的交點為MN,將N的坐標代入反比例函數(shù)中求出k1的值,將兩點坐標代入一次函數(shù)解析式中,求出k2b的值,確定出一次函數(shù)解析式,令y=0求出x的值,即為一次函數(shù)與x軸交點的橫坐標,即可確定出一次函數(shù)與x軸的交點坐標.

M(3,)和點N(1,2)為兩函數(shù)的交點,

x=1,y=2代入反比例函數(shù)y=中得:2=,即k1=2;

將兩點坐標代入y=k2x+b得:,

解得:k1,b=

∴一次函數(shù)解析式為y=x+,

y=0,解得:x=2,

∴一次函數(shù)與x軸交點為(2,0).

故答案為:2;;(2,0)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD是高,CE是中線,DG垂直平分CE連接DE

1)求證:DCBE;

2)若∠AEC72°,求∠BCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有一個角是其鄰角一半的圓內(nèi)接四邊形叫做圓內(nèi)倍角四邊形.

(1)如圖1,四邊形ABCD內(nèi)接于⊙O,DCB﹣ADC=A,求證:四邊形ABCD為圓內(nèi)接倍角四邊形;

(2)在(1)的條件下,⊙O半徑為5.

①若AD為直徑,且sinA=,求BC的長;

②若四邊形ABCD中有一個角為60°,且BC=CD,則四邊形ABCD的面積是  ;

(3)在(1)的條件下,記AB=a,BC=b,CD=c,AD=d,求證:d2﹣b2=ab+cd.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC和DEB中,已知AB=DE,還需添加兩個條件才能使ABC≌△DEC,不能添加的一組條件是

A.BC=EC,B=E B.BC=EC,AC=DC

C.BC=DC,A=D D.B=E,A=D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AGCDK

1)如圖1,求證:KE=GE

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE;

3)如圖3,在(2)的條件下,連接CGAB于點N,若sinE=,AK=,求CN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC在平面直角坐標系中的位置如圖所示.將ABC向右平移6個單位長度,再向下平移6個單位長度得到A1B1C1(圖中每個小方格邊長均為1個單位長度)

(1)在圖中畫出平移后的A1B1C1

(2)直接寫出A1B1C1各頂點的坐標.

; ; ;

3)求出ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:數(shù)和形是數(shù)學(xué)的兩個主要研究對象,我們經(jīng)常運用數(shù)形結(jié)合,樹形轉(zhuǎn)化的方法解決一些數(shù)學(xué)問題,小明在求同一坐標軸上兩點間的距離時發(fā)現(xiàn),對于平面直角坐標系內(nèi)任意兩點P1x1,y1),P2x2,y2),可通過構(gòu)造直角三角形利用圖1得到結(jié)論:P1P2=,他還利用圖2證明了線段P1P2的中點Px,y),P的坐標公式:x=,y=

啟發(fā)應(yīng)用:

如圖3:在平面直角坐標系中,已知A8,0),B0,6),C1,7),M經(jīng)過原點O及點A,B,

1)求⊙M的半徑及圓心M的坐標;

2)判斷點C與⊙M的位置關(guān)系,并說明理由;

3)若∠BOA的平分線交AB于點N,交⊙M于點E,分別求出OE的表達式y1,過點M的反比例函數(shù)的表達式y2,并根據(jù)圖象,當y2y10時,請直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一位運動員在距籃下4m處跳起投籃,球運行的路線是拋物線,當球運行的水平距離是2.5m時,達到最大高度3.5m,然后準確落入籃圈.已知籃圈中心到地面的距離為3.05m.

(1)建立如圖所示的平面直角坐標系,求拋物線的解析式.

(2)該運動員身高1.8m,在這次跳投中,球在頭頂上0.25m處出手,

問:球出手時,他距離地面的高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列解題過程

已知a、b、c為△ABC為三邊,且滿足a2c2b2c2a4b4,試判斷△ABC的形狀

解:∵a2c2b2c2a4b4

c2(a2b2)(a2b2)(a2b2)

c2a2b2

∴△ABC是直角三角形

回答下列問題:

(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的序號________

(2)錯誤原因為________

(3)本題正確結(jié)論是什么,并說明理由.

查看答案和解析>>

同步練習冊答案