【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于A,B兩點(diǎn).

1)求的面積;

2)觀察圖象,可知一次函數(shù)值小于反比例函數(shù)值的x的取值范圍是

【答案】14;(2

【解析】

1)首先解一次函數(shù)與反比例函數(shù)的解析式組成的方程組即可求得AB的坐標(biāo);然后求得ABx軸的交點(diǎn),然后根據(jù)SAOB=SAOC+SOBC即可求解;

2)一次函數(shù)值小于反比例函數(shù)值,即對(duì)相同的x的值,一次函數(shù)的圖象在反比例函數(shù)的圖象的下邊,據(jù)此即可求得x的范圍.

解:(1)解方程組,

,解得:x=31,

,

A(31),B(1,3)

設(shè)一次函數(shù)x軸的交點(diǎn)為C,如下圖:

y=x2中,令y=0,解得:x=2,

C的坐標(biāo)是(2,0),則OC=2

SAOB=SAOC+SOBC=;

2)根據(jù)圖象所示:當(dāng)時(shí),一次函數(shù)圖象在反比例函數(shù)圖象的下邊,

此時(shí)一次函數(shù)值小于反比例函數(shù)值,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長(zhǎng)為3,E、F分別是AB、BC邊上的點(diǎn),且EDF=45°.將DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到DCM.

1)求證:EF=FM

2)當(dāng)AE=1時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中,分別是邊上的點(diǎn),且,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:①,②,③,④,其中正確結(jié)論的個(gè)數(shù)為(

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2015南通)如圖,在ABCD中,點(diǎn)E,F分別在ABDC上,且EDDB,FBBD

(1)求證:AED≌△CFB;

(2)若∠A=30°,DEB=45°,求證:DA=DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系xOy中點(diǎn)A的坐標(biāo)為(﹣1,1),點(diǎn)B的坐標(biāo)為(3,3),拋物線經(jīng)過A、O、B三點(diǎn),連接OA、OB、AB,線段ABy軸于點(diǎn)E.

(1)求點(diǎn)E的坐標(biāo);

(2)求拋物線的函數(shù)解析式;

(3)點(diǎn)F為線段OB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、B重合),直線EF與拋物線交于M、N兩點(diǎn)(點(diǎn)Ny軸右側(cè)),連接ON、BN,當(dāng)四邊形ABNO的面積最大時(shí),求點(diǎn)N的坐標(biāo)并求出四邊形ABNO面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

1x28x+10

2

3)解不等式組:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國(guó)古代數(shù)學(xué)專著在數(shù)學(xué)上有其獨(dú)到的成就,不僅最早提到了分?jǐn)?shù)問題,首先記錄了盈不足等問題.如有一道闡述盈不足的問題,原文如下:今有共買雞,人出九,盈十一;人出六,不足十六.問人數(shù)、雞價(jià)各幾何?譯文為:現(xiàn)有若干人合伙出錢買雞,如果每人出9文錢,就會(huì)多11文錢;如果每人出6文錢又會(huì)缺16文錢,問買雞的人數(shù)、雞的價(jià)格各是多少?通過計(jì)算可得買雞的人數(shù)是(

A.6B.7C.8D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x方程x2-6x+m+4=0有兩個(gè)實(shí)數(shù)根x1x2

1)求m的取值范圍.

2)若,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案