【題目】如圖,已知拋物線E1:y=x2經過點A(1,m),以原點為頂點的拋物線E2經過點B(2,2),點A、B關于y 軸的對稱點分別為點A′,B′.
(1)求m的值;
(2)求拋物線E2所表示的二次函數(shù)的表達式;
(3)在第一象限內,拋物線E1上是否存在點Q,使得以點Q、B、B′為頂點的三角形為直角三角形?若存在,求出點Q的坐標;若不存在,請說明理由.
【答案】解:(1)∵拋物線E1經過點A(1,m)
∴m=12=1
(2)∵拋物線E2的頂點在原點,可設它對應的函數(shù)表達式為y=ax2(a≠0)
又∵點B(2,2)在拋物線E2上
∴2=a×22 , 解得:a=
∴拋物線E2所對應的二次函數(shù)表達式為y=x2
(3)如圖所示:
①當點B為直角頂點時,過B作Q1B⊥BB′交拋物線E1于Q,則點Q1與B的橫坐標相等且為2,將x=2代入y=x2得y=4,
∴點Q1的坐標為(2,4).
②當點Q2為直角頂點時,則有Q2B′2+Q2B2=B′B2 , 過點Q2作GQ2⊥BB′于G,設點Q2的坐標為(t,t2)(t>0),則有(t+2)2+(t2﹣2)2+(2﹣t)2+(t2﹣2)2=4,
整理得:t4﹣3t2=0,
∵t>0,
∴t2﹣3=0,解得t1=,t2=﹣(舍去),
∴點Q的坐標為(,3),
綜上所述,存在符合條件的點Q坐標為(2,4)與(,3).
【解析】(1)將A(1,m)代入y=x2 , 求得m的值即可;
(2)設拋物線E2的函數(shù)表達式為y=ax2(a≠0),將點B(2,2)代入拋物線的解析式求得a的值即可;
(3)當∠BB′Q=90°時,將x=2代入y=x2 , 可求得點Q的縱坐標,當∠BQB′=90°時,設點Q2的坐標為(t,t2),依據(jù)兩點間的距離公式和勾股定理的逆定理列出關于t的方程求解即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,則下面的結論:
①△ODC是等邊三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE ,
其中正確結論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,對角線AC,BD交于點O,E是BD延長線上的點,且△ACE是等邊三角形.
(1)求證:四邊形ABCD是菱形(2)若∠AED=2∠EAD,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是直線AB上一點,OC為任意一條射線,OD平分∠BOC,OE平分∠AOC.
(1)OD與OE的位置關系是______;(2)∠EOC的余角是_______ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是直線AB上的一點,OC為任一射線,OD平分∠BOC,OE平分∠AOC.
(1)指出圖中∠AOD的補角和∠BOE的補角;
(2)若∠BOC=68°,求∠COD和∠EOC的度數(shù);
(3)∠COD與∠EOC具有怎樣的數(shù)量關系?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先化簡,再求值:
(1)3x+2(x2-y)-3(2x2+x-y),其中x=,y=-3;
(2)3a2c-[2ab2-2(abc-ab2)+3a2c]-abc,其中a=-,b=2,c=3.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一個直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,你能求出CD的長嗎?若能,請給出求解過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某檢修小組從地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負,一天中七次行駛紀錄如下.(單位:)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
求收工時,檢修小組在地的哪個方向?距離地多遠?
在第幾次紀錄時距地最遠?
若汽車行駛每千米耗油升,問從地出發(fā),檢修結束后再回到地共耗油多少升?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com