【題目】如圖,在四邊形ABCD中,AD∥BC,EAB的中點,連接DE并延長交CB的延長線于點F,點G在邊BC上,且∠GDF=∠ADF.連接EG,判斷EGDF的位置關系,并說明理由.

【答案】EG與DF的位置關系是EG⊥DF.

【解析】

先證明ADEBFE得到DE=EF,先證明△DGF是等腰三角形,再根據(jù)等腰三角形三線合一的性質得出結論

EGDF的位置關系是EGDF.理由如下:

ADBC,∴∠ADE=BFE

EAB的中點,∴AE=BE

又∵∠FEB=∠DEA,∴ADEBFE,∴DE=EF

∵∠GDF=ADF,∠ADE=BFE,∴∠GDF=BFE,∴GD=GF

DE=EF,∴EGDF

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,BD垂直平分AC,垂足為點F,E為四邊形ABCD外一點,且∠ADE=∠BAD,AE⊥AC

1)求證:四邊形ABDE是平行四邊形;

2)如果DA平分∠BDE,AB=5AD=6,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在求1+2+22+23+24+25+26的值時,小明發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的2倍,于是他設:S=1+2+22+23+24+25+26①然后在①式的兩邊都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.

(1)1+3+32+33+34+35+36的值

(2)1+a+a2+a3+…+a2013(a≠0a≠1)的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的三條角平分線相交于點I,過點IDIIC,交AC于點D.

(1)如圖①,求證:∠AIB=ADI;

(2)如圖②,延長BI,交外角∠ACE的平分線于點F.

①判斷DICF的位置關系,并說明理由;

②若∠BAC=70°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,ABAC,點DBC的中點,直角∠MDN繞點D旋轉,DMDN分別與邊AB,AC交于E,F兩點,下列結論:①△DEF是等腰直角三角形;②AECF;③△BDE≌△ADF;BECFEF,其中正確結論是( )

A. ①②④ B. ②③④

C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司向甲、乙兩所中學送水,每次送往甲中學7600升,乙中學4000升.已知人均送水量相同,甲中學師生人數(shù)是乙中學的2倍少20人.

(1)求這兩所中學師生人數(shù)分別是多少;

(2)若送瓶裝水,價格為1/升;若用消防車送飲用水,不需購買,但需配送水塔,容量500升的水塔售價為520/個,其他費用不計.請問這次乙中學用瓶裝水花費少還是飲用消防車送水花費少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,⊙C的半徑為r,P是與圓心C不重合的點,點P關于⊙C的限距點的定義如下:若P′為直線PC與⊙C的一個交點,滿足r≤PP′≤2r,則稱P′為點P關于⊙C的限距點,如圖為點P及其關于⊙C的限距點P′的示意圖.

(1)當⊙O的半徑為1時.
①分別判斷點M(3,4),N( ,0),T(1, )關于⊙O的限距點是否存在?若存在,求其坐標;
②點D的坐標為(2,0),DE,DF分別切⊙O于點E,點F,點P在△DEF的邊上.若點P關于⊙O的限距點P′存在,求點P′的橫坐標的取值范圍;
(2)保持(1)中D,E,F(xiàn)三點不變,點P在△DEF的邊上沿E→F→D→E的方向運動,⊙C的圓心C的坐標為(1,0),半徑為r,請從下面兩個問題中任選一個作答.

問題1

問題2

若點P關于⊙C的限距點P′存在,且P′隨點P的運動所形成的路徑長為πr,則r的最小值為

若點P關于⊙C的限距點P′不存在,則r的取值范圍為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,BE平分∠ABC交AD于點E,F(xiàn)為BE上一點,連接DF,過F作FG⊥DF交BC于點G,連接BD交FG于點H,若FD=FG,BF=3 ,BG=4,則GH的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列方程中變形正確的是(

3x+6=0變形為x+2=0;

2x+8=5-3x變形為x=3;

=4去分母,得3x+2x=24;

(x+2)-2(x-1)=0去括號,得x+2-2x-2=0.

A. ①③ B. ①②③ C. ①④ D. ①③④

查看答案和解析>>

同步練習冊答案