【題目】如圖,D是直徑AB上一定點,E,F分別是AD,BD的中點,P是上一動點,連接PA,PE,PF.已知AB=6cm,設(shè)A,P兩點間的距離為xcm,P,E兩點間的距離為y1cm,P,F兩點間的距離為y2cm.
小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小騰的探究過程,請補充完整:
(1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y1,y2與x的幾組對應(yīng)值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0.97 | 1.27 |
| 2.66 | 3.43 | 4.22 | 5.02 |
y2/cm | 3.97 | 3.93 | 3.80 | 3.58 | 3.25 | 2.76 | 2.02 |
(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)值所對應(yīng)的點(x,y1),(x,y2),并畫出函數(shù)y1,y2的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當△PEF為等腰三角形時,AP的長度約為 cm.
【答案】(1)1.90;(2)見解析;(3)3.5或3.8或4.8
【解析】
(1)通過畫圖、測量可得表中的所填數(shù)值;
(2)把表格的數(shù)據(jù)描到平面直角坐標系中,再用平滑的曲線連接即可畫出函數(shù)y1,y2的圖像;
(3)結(jié)合函數(shù)圖像,即可得當△PEF為等腰三角形時,AP的長度.
(1)通過測量可知:
表中的所填數(shù)值是1.90,
故答案為:1.90;
(2)函數(shù)y1,y2的圖象如圖:
(3)觀察圖象可知:
△PEF為等腰三角形,①當PE=PF時,,兩函數(shù)的交點,AP的長度約為3.8 cm;②當PE=EF時,,AP的長度約為3.5cm;③當PF=EF時,,AP的長度約為4.8 cm.
故答案為:3.5或3.8或4.8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中記載:“今有上禾三秉,益實六斗,當下禾十秉.下禾五秉,益實一斗,當上禾二秉.問上、下禾實一秉各幾何?”其大意是:今有上等稻子三捆,若打出來的谷子再加六斗,則相當于十捆下等稻子打出來的谷子.有下等稻子五捆,若打出來的谷子再加一斗,則相當于兩捆上等稻子打?qū)鐏淼墓茸?/span>.問上等、下等稻子每捆能打多少斗谷子?設(shè)上等稻子每捆能打x斗谷子,下等稻子每捆能打y斗谷子,根據(jù)題意,可列方程組為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了做到合理用藥,使藥物在人體內(nèi)發(fā)揮療效作用,該藥物的血藥濃度應(yīng)介于最低有效濃度與最低中毒濃度之間.某成人患者在單次口服1單位某藥后,體內(nèi)血藥濃度及相關(guān)信息如圖:
根據(jù)圖中提供的信息,下列關(guān)于成人患者使用該藥物的說法中:
①首次服用該藥物1單位約10分鐘后,藥物發(fā)揮療效作用;
②每間隔4小時服用該藥物1單位,可以使藥物持續(xù)發(fā)揮治療作用;
③每次服用該藥物1單位,兩次服藥間隔小于2.5小時,不會發(fā)生藥物中毒.
所有正確的說法是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,直線x=5與直線y=3,x軸分別交于點A,B,直線y=kx+b(k≠0)經(jīng)過點A且與x軸交于點C(9,0).
(1)求直線y=kx+b的表達式;
(2)橫、縱坐標都是整數(shù)的點叫做整點.記線段AB,BC,CA圍成的區(qū)域(不含邊界)為W.
①結(jié)合函數(shù)圖象,直接寫出區(qū)域W內(nèi)的整點個數(shù);
②將直線y=kx+b向下平移n個單位,當平移后的直線與區(qū)域W沒有公共點時,請結(jié)合圖象直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,E、F是對角線AC上的兩個動點,且EF=2,P是正方形四邊上的任意一點.若△PEF是等邊三角形,則符合條件的P點共有_____個,此時AE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,AB,CD,EF,GH是正方形OPQR邊上的線段,點M在其中某條線段上,若射線OM與x軸正半軸的夾角為α,且sinα>cosα,則點M所在的線段可以是( )
A.AB和CDB.AB和EFC.CD和GHD.EF和GH
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=x2﹣2mx+m2+m的頂點為A.
(1)當m=1時,直接寫出拋物線的對稱軸;
(2)若點A在第一象限,且OA=,求拋物線的解析式;
(3)已知點B(m﹣,m+1),C(2,2).若拋物線與線段BC有公共點,結(jié)合函數(shù)圖象,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD相交于點O,過點O作BD的垂線與邊AD,BC分別交于點E,F,連接BE交AC于點K,連接DF.
(1)求證:四邊形EBFD是菱形;
(2)若BK=3EK,AE=4,求四邊形EBFD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過舉國上下抗擊新型冠狀病毒的斗爭,疫情得到了有效控制,國內(nèi)各大企業(yè)在2月9日后紛紛進入復(fù)工狀態(tài).為了了解全國企業(yè)整體的復(fù)工情況,我們查找了截止到2020年3月1日全國部分省份的復(fù)工率,并對數(shù)據(jù)進行整理、描述和分析.下面給出了一些信息:
a.截止3月1日20時,全國已有11個省份工業(yè)企業(yè)復(fù)工率在90%以上,主要位于東南沿海地區(qū),位居前三的分別是貴州(100%)、浙江(99.8%)、江蘇(99%).
b.各省份復(fù)工率數(shù)據(jù)的頻數(shù)分布直方圖如圖1(數(shù)據(jù)分成6組,分別是40<x≤50;
50<x≤60;60<x≤70;70<x≤80;80<x≤90;90<x≤100):
c.如圖2,在b的基礎(chǔ)上,畫出扇形統(tǒng)計圖:
d.截止到2020年3月1日各省份的復(fù)工率在80<x≤90這一組的數(shù)據(jù)是:
81.3 | 83.9 | 84 | 87.6 | 89.4 | 90 | 90 |
e.截止到2020年3月1日各省份的復(fù)工率的平均數(shù)、中位數(shù)、眾數(shù)如下:
日期 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
截止到2020年3月1日 | 80.79 | m | 50,90 |
請解答以下問題:
(1)依據(jù)題意,補全頻數(shù)分布直方圖;
(2)扇形統(tǒng)計圖中50<x≤60這組的圓心角度數(shù)是 度(精確到0.1).
(3)中位數(shù)m的值是 .
(4)根據(jù)以上統(tǒng)計圖表簡述國內(nèi)企業(yè)截止3月1日的復(fù)工率分布特征.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com