【題目】已知x = 2是關(guān)于x的方程2x -a =1的解,則a的值是__________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90 ,AC=BC,AD平分∠CAB,交BC于D,DE⊥AB于E,且AB=6cm,則△BED的周長是cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)動(dòng)隊(duì)欲從甲、乙兩名優(yōu)秀選手中選一名參加全省射擊比賽,該運(yùn)動(dòng)隊(duì)預(yù)先對這兩名選手進(jìn)行了8次測試,測得的成績?nèi)绫恚?/span>
次數(shù) | 選手甲的成績(環(huán)) | 選手乙的成績(環(huán)) |
1 | 9.6 | 9.5 |
2 | 9.7 | 9.9 |
3 | 10.5 | 10.3 |
4 | 10.0 | 9.7 |
5 | 9.7 | 10.5 |
6 | 9.9 | 10.3 |
7 | 10.0 | 10.0 |
8 | 10.6 | 9.8 |
根據(jù)統(tǒng)計(jì)的測試成績,請你運(yùn)用所學(xué)過的統(tǒng)計(jì)知識(shí)作出判斷,派哪一位選手參加比賽更好?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a>0)與x軸的兩個(gè)交點(diǎn)分別為A(﹣1,0)、B(3,0),與y 軸的交點(diǎn)為點(diǎn)D,頂點(diǎn)為C,
(1)寫出該拋物線的對稱軸方程;
(2)當(dāng)點(diǎn)C變化,使60°≤∠ACB≤90°時(shí),求出a的取值范圍;
(3)作直線CD交x軸于點(diǎn)E,問:在y軸上是否存在點(diǎn)F,使得△CEF是一個(gè)等腰直角三角形?若存在,請求出a的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=60°,∠A=40°.
(1)用尺規(guī)作圖:作AB的垂直平分線,交AC于點(diǎn)D,交AB于點(diǎn)E(保留作圖痕跡,不要求寫作法和證明);
(2)求證:BD平分∠CBA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生小張利用暑假50天在一超市勤工儉學(xué),被安排銷售一款成本為40元/件的新型商品,此類新型商品在第x天的銷售量p件與銷售的天數(shù)x的關(guān)系如下表:
x(天) | 1 | 2 | 3 | … | 50 |
p(件) | 118 | 116 | 114 | … | 20 |
銷售單價(jià)q(元/件)與x滿足:當(dāng)1≤x<25時(shí),q=x+60;當(dāng)25≤x≤50時(shí),q=40+.
(1)請分析表格中銷售量p與x的關(guān)系,求出銷售量p與x的函數(shù)關(guān)系;
(2)求該超市銷售該新商品第x天獲得的利潤y元關(guān)于x的函數(shù)關(guān)系式;
(3)這50天中,該超市第幾天獲得利潤最大?最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D為BC的中點(diǎn),E,F分別是AB,AC上的點(diǎn),且DE⊥DF.
求證:BE+CF>EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如右圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長為x米.
⑴若苗圃園的面積為72平方米,求x;
⑵若平行于墻的一邊長不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;
⑶當(dāng)這個(gè)苗圃園的面積不小于100平方米時(shí),直接寫出x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com