【題目】某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如右圖所示),設(shè)這個苗圃園垂直于墻的一邊長為x米.
⑴若苗圃園的面積為72平方米,求x;
⑵若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;
⑶當(dāng)這個苗圃園的面積不小于100平方米時,直接寫出x的取值范圍.
【答案】(1)x1=3,x2=12(2)①當(dāng)x=時, S最大=; ②當(dāng)x=11時, S最小=11×(30-22)=88.(3)5≤x≤10.
【解析】(1)根據(jù)題意得方程求解即可;(2)設(shè)苗圃園的面積為y,根據(jù)題意得到二次函數(shù)解析式y(tǒng)=x(30-2x)=-2x2+30x,根據(jù)二次函數(shù)的性質(zhì)求解即可;(3)由題意得不等式,即可得到結(jié)論.
解:(1)苗圃園與墻平行的一邊長為(30-2x)米.依題意可列方程
x(30-2x)=72,即x2-15x+36=0.
解得x1=3,x2=12.
(2)依題意,得8≤30-2x≤18.解得6≤x≤11.
面積S=x(30-2x)=-2(x-)2+ (6≤x≤11).
①當(dāng)x=時,S有最大值,S最大=;
②當(dāng)x=11時,S有最小值,S最小=11×(30-22)=88.
(3)令x(30-2x)=100,得x2-15x+50=0.
解得x1=5,x2=1
∴x的取值范圍是5≤x≤10.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一條開口向下的拋物線的頂點(diǎn)坐標(biāo)是(2,3),則這條拋物線有( )
A.最大值3
B.最小值3
C.最大值2
D.最小值﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接杭州G20峰會,某校開展了設(shè)計“YJG20”圖標(biāo)的活動,下列圖形中既是軸對稱圖形又是中心對稱圖形的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義運(yùn)算:ab=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的兩根,則bb﹣aa的值為( )
A. 0 B. 1 C. 2 D. 與m有關(guān)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,AB=AC,若□ABCD的周長為38 cm,△ABC的周長比□ABCD的周長少10 cm,求□ABCD的一組鄰邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC 中,∠C=90°,BC=3,AC=4.現(xiàn)在要將交ABC 擴(kuò)充成等腰三角形,且擴(kuò)充的部分是以AC為直角邊的直角三角形,求擴(kuò)充后等腰三角形的周長.
趙佳同學(xué)是這樣操作的:如圖 1 所示,延長BC 到點(diǎn) D,使CD=BC,連接AD.所以,△ADB 為符合條件的三角形.則此時△ADB的周長為____________.
請你在圖2、圖3中再設(shè)計兩種擴(kuò)充方案,并直接寫出擴(kuò)充后等腰三角形的周長.
圖2的周長:______________;圖3的周長:______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小雨的爸爸從市場買回來四個大西瓜,爸爸為了考一考小雨,讓小雨把四個大西瓜依次邊上①,②,③,④號后,按質(zhì)量由小到大的順序排列出來(不準(zhǔn)用稱),小雨用一個簡易天平操作,操作如下:(操作過程中,天平自身損壞忽略不計)
根據(jù)實(shí)驗(yàn),小雨很快就把四個編好號的大西瓜的質(zhì)量由小到大排列起來了.你認(rèn)為小雨的實(shí)驗(yàn)于結(jié)果都是真實(shí)的嗎?(即通過上述實(shí)驗(yàn)?zāi)苷页鏊鼈冑|(zhì)量的大小嗎?)請說明你的理由,并與同學(xué)交流.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com