【題目】如圖,在正方形ABCD中,E、F分別是AB、BC上的點,且AE=BF.求證:CE=DF.

【答案】證明:在正方形ABCD中,AB=BC=CD,∠B=∠BCD=90°, ∵AE=BF,
∴AB﹣AE=BC﹣BF,
即BE=CF,
在△BCE和△CDF中,
,
∴△BCE≌△CDF(SAS),
∴CE=DF.
【解析】根據(jù)正方形的性質可得AB=BC=CD,∠B=∠BCD=90°,然后求出BE=CF,再利用“邊角邊”證明△BCE和△CDF全等,根據(jù)全等三角形對應邊相等證明即可.
【考點精析】本題主要考查了正方形的性質的相關知識點,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小河兩岸邊各有一棵樹,分別高30尺和20尺,兩樹的距離是50尺,每棵樹的樹頂上都停著一只鳥.忽然,兩只鳥同時看見水面上游出一條魚,它們立刻飛去抓魚,速度相同,并且同時到達目標.則這條魚出現(xiàn)的地方離開比較高的樹的距離為___________尺.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線CBOA,COAB100°,點E、F在線段BC上,滿足∠FOBAOBα,OE平分∠COF.

(1)用含有α的代數(shù)式表示∠COE的度數(shù);

(2)若沿水平方向向右平行移動AB,則∠OBC∶∠OFC的值是否發(fā)生變化?若變化,找出變化規(guī)律;若不變,求其比值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從正面看一個底面直徑為10cm的圓柱體飲料杯子如圖所示,在它的正中間豎直插入一根吸管(吸管在杯口一端的位置固定不動),吸管露出杯子外1cm,當吸管伸向杯壁底部時,吸管頂端剛好與杯口高度平齊.

(1)求杯子的高度;

(2)若吸管伸出杯口的長度至少為0.5cm時,才方便喝飲料,則吸管至少應設計為多長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲口袋中裝有3個相同的小球,它們分別寫有數(shù)值﹣1,1,5;乙口袋中裝有3個相同的小球,它們分別寫有數(shù)值﹣4,2,3.現(xiàn)從甲口袋中隨機取一球,記它上面的數(shù)值為x,再從乙口袋中隨機取一球,記它上面的數(shù)值為y.設點A的坐標為(x,y),請用樹形圖或列表法,求點A落在第一象限的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018年,新疆某次足球聯(lián)賽規(guī)定每隊勝一場得3分,平一場得1分,負一場得0分,某隊前14場保持不敗,共得32分,設該隊平了x場,根據(jù)題意列方程得:_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為矩形ABCD的中心,M為BC邊上一點,N為DC邊上一點,ON⊥OM,若AB=6,AD=4,設OM=x,ON=y,則y與x的函數(shù)關系式為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】文文和彬彬在證明有兩個角相等的三角形是等腰三角形這一命題時,畫出圖形,寫出已知求證(如圖),她們對各自所作的輔助線描述如下:

文文過點ABC的中垂線AD,垂足為D”;

彬彬:ABC的角平分線AD”

數(shù)學老師看了兩位同學的輔助線作法后,說:彬彬的作法是正確的,而文文的作法需要訂正.

1)請你簡要說明文文的輔助線作法錯在哪里;

2)根據(jù)彬彬的輔助線作法,完成證明過程.

查看答案和解析>>

同步練習冊答案