【題目】如圖,在菱形ABCD中,M,N分別是邊AB,BC的中點,MP⊥AB交邊CD于點P,連接NM,NP.
(1)若∠B=60°,這時點P與點C重合,則∠NMP= 度
(2)求證:NM=NP
(3)當△NPC為等腰三角形時,求∠B的度數
【答案】
(1)30
(2)
證明:延長MN交DC的延長線于點E,
∵四邊形ABCD是菱形,∴AB∥DC,
∴∠BMN=∠E,
∵點N是線段BC的中點,∴BN=CN,
在△MNB和△ENC中,
∴△MNB≌△ENC,
∴MN=EN,
即點N是線段ME的中點,
∵MP⊥AB交邊CD于點P,
∴MP⊥DE,
∴∠MPE=90°,
∴PN=MN=ME
(3)
解:如圖2
∵四邊形ABCD是菱形,∴AB=BC,
又M,N分別是邊AB,BC的中點,
∴MB=NB,
∴∠BMN=∠BNM,
由(2)知:△MNB≌△ENC,
∴∠BMN=∠BNM=∠E=∠CNE,
又∵PN=MN=NE,
∴∠NPE=∠E,
設∠BMN=∠BNM=∠E=∠CNE=∠NPE=x°,
則∠NCP=2x°,∠NPC=x°,
①若PN=PC,則∠PNC=∠NCP=2x°,
在△PNC中,2x+2x+x=180,
解得:x=36,
∴∠B=∠PNC+∠NPC=2x°+x°=36°×3=108°,
②若PC=NC,則∠PNC=∠NPC=x°,
在△PNC中,2x+x+x=180,
解得:x=45,
∴∠B=∠PNC+∠NPC=x°+x°=45°+45°=90°.
【解析】(1)根據直角三角形的中線等于斜邊上的一半,即可得解;
(2)延長MN交DC的延長線于點E,證明△MNB≌△ENC,進而得解;
(3)NC和PN不可能相等,所以只需分PN=PC和PC=NC兩種情況進行討論即可.
此題考查了直角三角形中線,全等三角形判定與性質.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB°,AB=5,BC=3,P是AB邊上的動點(不與點B重合),將△BCP沿CP所在的直線翻折,得到△B′CP,連接B′A,則B′A長度的最小值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為開展“爭當書香少年”活動,小石對本校部分同學進行“最喜歡的圖書類別”的問卷調查,結果統(tǒng)計后,繪制了如下兩幅不完整的統(tǒng)計圖:
(1)此次被調查的學生共 人
(2)補全條形統(tǒng)計圖
(3)扇形統(tǒng)計圖中,藝術類部分所對應的圓心角為 度
(4)若該校有1200名學生,估計全校最喜歡“文史類”圖書的學生有 人
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現正是閩北特產楊梅熱銷的季節(jié),某水果零售商店分兩批次從批發(fā)市場共購進楊梅40箱,已知第一、二次進貨價分別為每箱50元、40元,且第二次比第一次多付款700元.
(1)設第一、二次購進楊梅的箱數分別為a箱、b箱,求a,b的值;
(2)若商店對這40箱楊梅先按每箱60元銷售了x箱,其余的按每箱35元全部售完.
①求商店銷售完全部楊梅所獲利潤y(元)與x(箱)之間的函數關系式;
②當x的值至少為多少時,商店才不會虧本.
(注:按整箱出售,利潤=銷售總收入﹣進貨總成本)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:底與腰的比是的等腰三角形叫做黃金等腰三角形.
如圖,已知△ABC中,AC=BC,∠C=36°,BA1平分∠ABC交AC于A1 .
(1)證明:AB2=AA1AC;
(2)探究:△ABC是否為黃金等腰三角形?請說明理由;(提示:此處不妨設AC=1)
(3)應用:已知AC=a,作A1B1∥AB交BC于B1 , B1A2平分∠A1B1C交AC于A2 , 作A2B2∥AB交B2 , B2A3平分∠A2B2C交AC于A3 , 作A3B3∥AB交BC于B3 , …,依此規(guī)律操作下去,用含a,n的代數式表示An﹣1An . (n為大于1的整數,直接回答,不必說明理由)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在邊長為1的小正方形組成的正方形網格中建立如圖片所示的平面直角坐標系,已知格點三角形ABC(三角形的三個頂點都在小正方形上)
(1)畫出△ABC關于直線l:x=﹣1的對稱三角形△A1B1C1;并寫出A1、B1、C1的坐標.
(2)在直線x=﹣l上找一點D,使BD+CD最小,滿足條件的D點為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2016年11月3日,我國第一枚大型運載火箭“長征5號”在海南文昌航天發(fā)射場順利升空,這標志著我國從航天大國邁向航天強國.如圖,火箭從地面L處發(fā)射,當火箭到達A點時,從位于地面R處雷達站測得AR的距離是6km,仰角為42.4°;1秒后火箭到達B點,此時測得仰角為45.5°.
(1)求發(fā)射臺與雷達站之間的距離LR;
(2)求這枚火箭從A到B的平均速度是多少?(結果精確到0.01,參考數據:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02 )
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com