【題目】小明從家出發(fā)到公園晨練,在公園鍛煉一段時間后按原路返回,同時小明爸爸從公園按小明的路線返回家中,如圖是兩人離家的距離y(米)與小明出發(fā)的時間x(分)之間的函數(shù)圖象,則下列結論中不正確的是( 。
A. 公園離小明家1600米
B. 小明出發(fā)分鐘后與爸爸第一次相遇
C. 小明在公園停留的時間為5分鐘
D. 小明與爸爸第二次相遇時,離家的距離是960米
【答案】D
【解析】
依據(jù)圖象可得:公園離小明家1600米;依據(jù)小明從家出發(fā)到公園晨練時的速度,以及小明爸爸從公園按小明的路線返回家中的速度,即可得到小明出后與爸爸第一次相遇的時間;由圖可得:30分鐘后小明與爸爸第二次相遇時,離家的距離是640米;依據(jù)小明在與爸爸第二次相遇后回到家的時間,以及小明在公園鍛煉一段時間后按原路返回的速度,即可得到小明在公園停留的時間為15﹣10=5分鐘.
解:由圖可得:公園離小明家1600米,故A選項正確;
∵小明從家出發(fā)到公園晨練時,速度為1600÷10=160米/分,小明爸爸從公園按小明的路線返回家中的速度為1600÷50=32米/分,
∴小明出后與爸爸第一次相遇的時間為1600÷(160+32)=分鐘,故B選項正確;
由圖可得:30分鐘后小明與爸爸第二次相遇時,離家的距離是1600﹣30×32=640米,故D選項錯誤;
∵小明在與爸爸第二次相遇后回到家的時間為:40﹣30=10分,
∴小明在公園鍛煉一段時間后按原路返回的速度為640÷10=64米/分,
∴40﹣1600÷64=15分,
∴小明在公園停留的時間為15﹣10=5分鐘,故C選項正確.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,四邊形OACB為菱形,OB在x軸的正半軸上,∠AOB=60°,過點A的反比例函數(shù)y= 的圖像與BC交于點F,則△AOF的面積為 ______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的函數(shù)y=+x,如表是y與x的幾組對應值:
x | … | ﹣4 | ﹣3 | -2 | - | -1 | - | - | 1 | 2 | 3 | 4 | … | |||
y | … | - | - | - | - | -2 | - | - | 2 | … |
如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點,根據(jù)描出的點畫出了此函數(shù)的圖象請你根據(jù)學習函數(shù)的經(jīng)驗,根據(jù)畫出的函數(shù)圖象特征,對該函數(shù)的圖象與性質進行探究:
(1)該函數(shù)的圖象關于 對稱;
(2)在y軸右側,函數(shù)變化規(guī)律是當0<x<1,y隨x的增大而減;當x>1,y隨x的增大而增大.在y軸左側,函數(shù)變化規(guī)律是 .
(3)函數(shù)y=當x 時,y有最 值為 .
(4)若方程+x=m有兩個不相等的實數(shù)根,則m的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點,點P在拋物線上(與A,B兩點不重合),若△ABP的三邊滿足AP2+BP2=AB2,則我們稱點P為拋物線y=ax2+bx+c(a≠0)的勾股點.
(1)直接寫出拋物線y=x2﹣1的勾股點坐標為_____;
(2)如圖2,已知拋物線:y=ax2+bx(a<0,b>0)與x軸交于A、B兩點,點P為拋物線的頂點,問點P能否為拋物線的勾股點,若能,求出b的值;
(3)如圖3,在平面直角坐標系中,點A(2,0),B(12,0),點P到x軸的距離為1,點P是過A、B兩點的拋物線上的勾股點,求過P、A、B三點的拋物線的解析式和點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】襄陽市精準扶貧工作已進入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質水果藍莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y元/千克,y關于x的函數(shù)解析式為 且第12天的售價為32元/千克,第26天的售價為25元/千克.已知種植銷售藍莓的成木是18元/千克,每天的利潤是W元(利潤=銷售收入﹣成本).
(1)m= ,n= ;
(2)求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?
(3)在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當∠ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,BC=3,∠BAC=30°,斜邊AB的兩個端點分別在相互垂直的射線OM,ON上滑動.下列結論:①若C、O兩點關于AB對稱,則OA=3;②若AB平分CO,則AB⊥CO;③C,O兩點間的最大距離是6;④斜邊AB的中點D運動的路徑長是π,其中正確的有( 。
A. ①②B. ③④C. ②③④D. ①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖①,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,點P由B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設運動的時間為t(s)(0<t<4),解答下列問題:
(1)當t為何值時,PQ∥BC;
(2)設△AQP的面積為y(cm2),求y與t之間的函數(shù)關系式;
(3)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;
(4)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時刻t,使四邊形PQP′C為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點O為圓心,作半圓與AC相切,點P,Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最小值是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com