【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點(diǎn),點(diǎn)E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時(shí),連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.
【答案】(1)證明見解析(2)90°(3)AP=CE
【解析】
試題(1)、根據(jù)正方形得出AB=BC,∠ABP=∠CBP=45°,結(jié)合PB=PB得出△ABP ≌△CBP,從而得出結(jié)論;(2)、根據(jù)全等得出∠BAP=∠BCP,∠DAP=∠DCP,根據(jù)PA=PE得出∠DAP=∠E,即∠DCP=∠E,然后根據(jù)180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E得出答案;(3)、首先證明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,從而得出∠CPF=∠EDF=60°,然后得出△EPC是等邊三角形,從而得出AP=CE.
試題解析:(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS), ∴PA=PC,∵PA=PE,∴PC=PE;
(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,
∵PA=PE, ∴∠DAP=∠E, ∴∠DCP=∠E, ∵∠CFP=∠EFD(對頂角相等),
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E, 即∠CPF=∠EDF=90°;
(3)、AP=CE
理由是:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
在△ABP和△CBP中, 又∵ PB=PB ∴△ABP≌△CBP(SAS), ∴PA=PC,∠BAP=∠BCP,
∵PA=PE,∴PC=PE,∴∠DAP=∠DCP, ∵PA=PC ∴∠DAP=∠E, ∴∠DCP=∠E
∵∠CFP=∠EFD(對頂角相等), ∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,
即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC是等邊三角形,∴PC=CE,∴AP=CE
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四名跳遠(yuǎn)運(yùn)動員選拔賽成績的平均數(shù)與方差s2如下表所示:
甲 | 乙 | 丙 | 丁 | |
平均數(shù)(cm) | 561 | 560 | 561 | 560 |
方差s2 | 3.5 | 3.5 | 15.5 | 16.5 |
根據(jù)表中數(shù)據(jù),要從中選擇一名成績好又發(fā)揮穩(wěn)定的運(yùn)動員參加比賽,應(yīng)該選擇( )
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】微信運(yùn)動和騰訊公益推出了一個(gè)愛心公益活動:一天中走路若步數(shù)達(dá)到10000步及以上,則可通過微信運(yùn)動和騰訊基金會向公益活動捐款,每步可捐0.0002元;若步數(shù)在10000步以下,則不能參與愛心公益捐款.
(1)某天小齊的步數(shù)為15000步,求他這天為愛心公益可捐款多少錢?
(2)己知甲、乙、丙三人某天通過步數(shù)共捐款8.4元,且甲的步數(shù):乙的步數(shù):丙的步數(shù),求這天甲走了多少步?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了比較市場上甲、乙兩種電子鐘每日走時(shí)誤差的情況,從這兩種電子鐘中,各隨機(jī)抽取10臺進(jìn)行測試,兩種電子鐘走時(shí)誤差的數(shù)據(jù)如下表(單位:秒):
編號 類型 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 | 九 | 十 |
甲種電子鐘 | 1 | -3 | -4 | 4 | 2 | -2 | 2 | -1 | -1 | 2 |
乙種電子鐘 | 4 | -3 | -1 | 2 | -2 | 1 | -2 | 2 | -2 | 1 |
(1) 計(jì)算甲、乙兩種電子鐘走時(shí)誤差的平均數(shù);
(2) 計(jì)算甲、乙兩種電子鐘走時(shí)誤差的方差;
(3) 根據(jù)經(jīng)驗(yàn),走時(shí)穩(wěn)定性較好的電子鐘質(zhì)量更優(yōu).若兩種類型的電子鐘價(jià)格相同,請問:你買哪種電子鐘?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有3名老師決定帶領(lǐng)名小學(xué)生去植物園游玩,有兩家旅行社可供選擇,甲旅行社的收費(fèi)標(biāo)準(zhǔn)為老師全價(jià),學(xué)生七折優(yōu)惠;而乙旅行社不分老師和學(xué)生一律八折優(yōu)惠,這兩家旅行社全價(jià)都是每人500元.
(1)用代數(shù)式表示這3位老師和名學(xué)生分別在甲、乙兩家旅行社的總費(fèi)用;
(2)如果這兩家旅行社的總費(fèi)用一樣,那么老師可以帶幾名學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別為AB、BC的中點(diǎn),連接CE、DF,將△CBE沿CE對折,得到△CGE,延長EG交CD的延長線于點(diǎn)H。
(1)求證:CE⊥DF;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市公共交通收費(fèi)如下:
公交票價(jià) | ||
里程(千米) | 票價(jià)(元) | 刷卡優(yōu)惠后付款(元) |
0-10 | 2 | 1 |
10-15 | 3 | 1.5 |
15-20 | 4 | 2 |
20-25 | 5 | 2.5 |
25-30 | 6 | 3 |
以后每增加5千米 | 增加1元 | 增加0.5元 |
地鐵票價(jià) | |
里程(千米) | 票價(jià)(元) |
0-6 | 3 |
6-12 | 4 |
12-22 | 5 |
22-32 | 6 |
32-52 | 7 |
52-72 | 8 |
以后每增加20千米 | 增加1元 |
(公交票價(jià)10千米(含)內(nèi)2元,不足10千米按10千米計(jì)算,其他里程類同;地鐵票價(jià)6千米(含)內(nèi)3元,不足6千米按6千米計(jì)算,其他里程類同)
(1)張阿姨周日去看望父母,可是張阿姨忘了帶一卡通,請你幫助張阿姨思考兩個(gè)問題:
①若到父母家無論乘公交車還是地鐵距離都是24千米,選擇哪種公交交通工具費(fèi)用較少?
②若只用10元錢乘坐公交或地鐵,選擇哪種公共交通工具乘坐的里程更遠(yuǎn)?
(2)張阿姨下周日計(jì)劃使用一卡通刷卡乘公共交通到景點(diǎn)游玩,若里程大于35千米且小于120千米,公交、地鐵均可直達(dá).請問:選擇公交還是選擇地鐵出行更省錢?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為40元,若銷售價(jià)為60元,每天可售出20件,為迎接“雙十一”,專賣店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷售量,經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)1元,那么平均可多售出2件,設(shè)每件童裝降價(jià)x元(x>0)時(shí),平均每天可盈利y元.
(1)寫出y與x的函數(shù)關(guān)系式;
(2)根(1)中你寫出的函數(shù)關(guān)系式,解答下列問題:
①當(dāng)該專賣店每件童裝降價(jià)5元時(shí),平均每天盈利多少元?
②當(dāng)該專賣店每件童裝降價(jià)多少元時(shí),平均每天盈利400元?
③該專賣店要想平均每天盈利600元,可能嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在樓房MN前有兩棵樹與樓房在同一直線上,且垂直于地面,為了測量樹AB、CD的高度,小明爬到樓房頂部M處,光線恰好可以經(jīng)過樹CD的頂站C點(diǎn)到達(dá)樹AB的底部B點(diǎn),俯角為37°,此時(shí)小亮測得太陽光線恰好經(jīng)過樹CD的頂部C點(diǎn)到達(dá)樓房的底部N點(diǎn),與地面的夾角為30°,樹CD的影長DN為15米,請求出樹AB和樓房MN的高度.
(,,,,結(jié)果精確到0.1m)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com