【題目】為推進(jìn)我市生態(tài)文明建設(shè),某校在美化校園活動(dòng)中,設(shè)計(jì)小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用30m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.
(1)若花園的面積為216m2,求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是17m和8m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.
【答案】(1)x1=12,x2=18;(2)x=13時(shí),S取得最大值,最大值為221.
【解析】
(1)根據(jù)AB=xm,就可以得出BC=30﹣x,由矩形的面積公式就可以得出關(guān)于x的方程,解之可得;
(2)根據(jù)題意建立不等式組求出結(jié)論,根據(jù)取值范圍由二次函數(shù)的性質(zhì)就可以得出結(jié)論.
解:(1)根據(jù)題意知AB=xm,則BC=30﹣x(m),
則x(30﹣x)=216,
整理,得:x2﹣30x+216=0,
解得:x1=12,x2=18;
(2)花園面積S=x(30﹣x)
=﹣x2+30x
=﹣(x﹣15)2+225,
由題意知,
解得:8≤x≤13,
∵a=﹣1,
∴當(dāng)x<15時(shí),S隨x的增大而增大,
∴當(dāng)x=13時(shí),S取得最大值,最大值為221.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=4,BC=3,如圖1,四邊形DEFG為△ABC的內(nèi)接正方形,則正方形DEFG的邊長(zhǎng)為_____.如圖2,若三角形ABC內(nèi)有并排的n個(gè)全等的正方形,它們組成的矩形內(nèi)接于△ABC,則正方形的邊長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,半徑OE⊥AB,P為AB的延長(zhǎng)線上一點(diǎn),PC與⊙O相切于點(diǎn)C,CE與AB交于點(diǎn)F.
(1)求證:PC=PF;
(2)連接OB,BC,若OB∥PC,BC=3,tanP=,求FB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)從下列兩個(gè)小題中任選一個(gè)作答,若多選,則按第一題計(jì)分.
A:一個(gè)正多邊形的一個(gè)外角為36°,則這個(gè)多邊形的對(duì)角線有_____條.
B:在△ABC中AB=AC,若AB=3,BC=4,則∠A的度數(shù)約為_____.(用科學(xué)計(jì)算器計(jì)算,結(jié)果精確到0.1°.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作出反比例函數(shù)y=-的圖象,并結(jié)合圖象回答:(1)當(dāng)x=2時(shí),y的值;(2)當(dāng)1<x≤4時(shí),y的取值范圍;(3)當(dāng)1≤y<4時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=-x+2與x軸、y軸分別交于點(diǎn)A、C,拋物線y=-x2+bx+c過點(diǎn)A、C,且與x軸交于另一點(diǎn)B,在第一象限的拋物線上任取一點(diǎn)D,分別連接CD、AD,作于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)求△ACD面積的最大值;
(3)若△CED與△COB相似,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售一種成本為20元的商品,經(jīng)調(diào)研,當(dāng)該商品每件售價(jià)為30元時(shí),每天可銷售200件:當(dāng)每件的售價(jià)每增加1元,每天的銷量將減少5件.
求銷量件與售價(jià)元之間的函數(shù)表達(dá)式;
如果每天的銷量不低于150件,那么,當(dāng)售價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大,最大利潤(rùn)是多少?
該商店老板熱心公益事業(yè),決定從每天的銷售利潤(rùn)中捐出100元給希望工程,為保證捐款后每天剩余利潤(rùn)不低于2900元,請(qǐng)直接寫出該商品售價(jià)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)(a、b都是常數(shù),且a<0)的圖像與x軸交于點(diǎn)、,頂點(diǎn)為點(diǎn)C.
(1)求這個(gè)二次函數(shù)的解析式及點(diǎn)C的坐標(biāo);
(2)過點(diǎn)B的直線交拋物線的對(duì)稱軸于點(diǎn)D,聯(lián)結(jié)BC,求∠CBD的余切值;
(3)點(diǎn)P為拋物線上一個(gè)動(dòng)點(diǎn),當(dāng)∠PBA=∠CBD時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,點(diǎn)D在邊AC上,BD的垂直平分線交CA的延長(zhǎng)線于點(diǎn)E,交BD于點(diǎn)F,聯(lián)結(jié)BE,ED2=EAEC.
(1)求證:∠EBA=∠C;
(2)如果BD=CD,求證:AB2=ADAC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com