【題目】請從下列兩個(gè)小題中任選一個(gè)作答,若多選,則按第一題計(jì)分.

A:一個(gè)正多邊形的一個(gè)外角為36°,則這個(gè)多邊形的對角線有_____條.

B:在△ABCABAC,若AB3,BC4,則∠A的度數(shù)約為_____.(用科學(xué)計(jì)算器計(jì)算,結(jié)果精確到0.1°.)

【答案】35 83.6°

【解析】

A:根據(jù)多邊形的外角和,可得多邊形,根據(jù)多邊形的對角線,可得答案;

B:首先畫出圖形,再利用sinBAD,結(jié)合計(jì)算器求出答案.

A:由一個(gè)正多邊形的一個(gè)外角為36°,得:

 360÷36=10,則這個(gè)多邊形的對角線有35

B:如圖所示:過點(diǎn)AADBC于點(diǎn)D

AB=3,BC=4,∴BD=DC=2,∴sinBAD,∴∠BAD41.8°,∴∠BAC83.6°.

故答案為:83.6°.

故答案為:35,83.6°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,點(diǎn)P從A出發(fā)沿AB以3cm/s的速度向點(diǎn)B移動(dòng),一直到達(dá)點(diǎn)B為止;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā)沿以2cm/s的速度向點(diǎn)D移動(dòng).經(jīng)過多長時(shí)間P、Q兩點(diǎn)的距離是10?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,我國兩艘海監(jiān)船AB在南海海域巡航,某一時(shí)刻,兩船同時(shí)收到指令,立即前往救援遇險(xiǎn)拋錨的漁船C,此時(shí),B船在A船的正南方向5海里處,A船測得漁船C在其南偏東45°方向,B船測得漁船C在其南偏東53°方向,已知A船的航速為30海里/小時(shí),B船的航速為25海里/小時(shí),問C船至少要等待多長時(shí)間才能得到救援?(參考數(shù)據(jù):sin 53°≈,cos 53°≈,tan 53°≈,≈1.41)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知公路lA、B兩點(diǎn)之間的距離為50m,小明要測量點(diǎn)C與河對岸邊公路l的距離,測得∠ACB=∠CAB30°.點(diǎn)C到公路l的距離為( 。

A. 25m B. m C. 25m D. 25+25m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,∠ACB90°,D是邊AB的中點(diǎn),P是邊AC上一動(dòng)點(diǎn),BPCD相交于點(diǎn)E

1)如果BC6,AC8,且PAC的中點(diǎn),求線段BE的長;

2)聯(lián)結(jié)PD,如果PDAB,且CE2,ED3,求cosA的值;

3)聯(lián)結(jié)PD,如果BP22CD2,且CE2ED3,求線段PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛客車從甲地出發(fā)前往乙地,平均速度v(千米/小時(shí))與所用時(shí)間t(小時(shí))的函數(shù)關(guān)系如圖所示,其中60≤v≤120.

(1)直接寫出vt的函數(shù)關(guān)系式;

(2)若一輛貨車同時(shí)從乙地出發(fā)前往甲地,客車比貨車平均每小時(shí)多行駛20千米,3小時(shí)后兩車相遇.

①求兩車的平均速度;

②甲、乙兩地間有兩個(gè)加油站A、B,它們相距200千米,當(dāng)客車進(jìn)入B加油站時(shí),貨車恰好進(jìn)入A加油站(兩車加油的時(shí)間忽略不計(jì)),求甲地與B加油站的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推進(jìn)我市生態(tài)文明建設(shè),某校在美化校園活動(dòng)中,設(shè)計(jì)小組想借助如圖所示的直角墻角(兩邊足夠長),用30m長的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)ABxm

(1)若花園的面積為216m2,求x的值;

(2)若在P處有一棵樹與墻CD,AD的距離分別是17m8m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣(x﹣h)2(h為常數(shù)),當(dāng)自變量x的值滿足2≤x≤5時(shí),與其對應(yīng)的函數(shù)值y的最大值為﹣1,則h的值為(

A. 36 B. 16 C. 13 D. 46

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,則下列結(jié)論(14a+2b+c0;(2)方程ax2+bx+c0兩根之和小于零;(3yx的增大而增大;(4)一次函數(shù)yx+bc的圖象一定不過第二象限.其中正確的個(gè)數(shù)是( 。

A. 4 個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

同步練習(xí)冊答案