【題目】ABCD的周長是32cm,∠ABC的平分線交AD所在直線于點E,且AE:ED=3:2,則AB的長為_____.
【答案】6cm或12cm.
【解析】
證△ABE是等腰三角形,分“點E在線段AD上” 和“點E在AD的延長線上”兩種情況,分別求得答案即可.
解:分兩種情況:
①點E在線段AD上,如圖1,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB=CD,AD=BC,
∴AB+AD=×32=16(cm),∠AEB=∠CBE,
∵∠ABC的平分線交AD所在的直線于點E,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE,
∵AE:ED=3:2,
∴AB:AD=3:5,
∵平行四邊形ABCD的周長為32cm.
∴AB的長為:16×=6(cm).
②點E在AD的延長線上,如圖2,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB=CD,AD=BC,
∴AB+AD=×32=16(cm),∠AEB=∠CBE,
∵∠ABC的平分線交AD所在的直線于點E,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE,
∵AE:ED=3:2,
∴AB:AD=3:1,
∵平行四邊形ABCD的周長為32cm.
∴AB的長為:16×=12(cm);
故答案為:6cm或12cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價與銷量的相關(guān)信息如下表:
時間x(天) | 1≤x<50 | 50≤x≤90 |
售價(元/件) | x+40 | 90 |
每天銷量(件) | 200-2x |
已知該商品的進(jìn)價為每件30元,設(shè)銷售該商品每天的利潤為y元。
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時,當(dāng)天的銷售利潤最大?最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于4800元?請直接寫出結(jié)果。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為6cm的⊙O中,點A是劣弧的中點,點D是優(yōu)弧上一點,且∠D=30下列四個結(jié)論:①OA⊥BC;②BC=cm;③cos∠AOB=;④四邊形ABOC是菱形. 其中正確結(jié)論的序號是( )
A. ①③ B. ①②③④ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,∠B=∠D,點E為BC延長線上一點,連接AE.
(1)如圖1,求證:AD∥BC
(2)若∠DAE和∠DCE的角平分線相交于點F.如圖2,若∠BAE=80°,求∠F的度數(shù)
(3)如圖3,∠DCE的角平分線的平分線交AE于點G,連接AC,若∠BAC=∠DAE,∠AGC=3∠CAE,則∠CAE的度數(shù)為________(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知點A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的邊AC上任意一點,△ABC經(jīng)過平移后得到△A1B1C1,點P的對應(yīng)點為P1(a+6,b-2).
(1)直接寫出點C1的坐標(biāo)為______ ;(2)求△AOA1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】股民小楊上星期五買進(jìn)某公司股票 1000 股,每股 27 元.下表為本周內(nèi)每日該股票的漲跌情況(單位:元):
(1)星期三收盤時,該股票漲或跌了多少元?
(2)本周內(nèi)該股票的最高價是每股多少元?最低價是每股多少元?
(3)已知小楊買進(jìn)股票時付了 1.5‰的手續(xù)費,賣出時還需要付成交額的 1.5‰的手續(xù)費和 1‰的交易稅.如果小楊在星期五收盤前將全部股票賣出,則他的收益情況如何?
(收益=賣股票收入﹣買股票支出﹣賣股票手續(xù)費和交易稅﹣買股票手續(xù)費)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在數(shù)軸上點A,B,C表示得數(shù)為﹣2,0,6.點A與點B之間的距離表示為AB,點B與點C之間的距離表示為BC,點A與點C之間的距離表示為AC.
(1)則AB= ,BC= ,AC= ;
(2)點A,B,C開始在數(shù)軸上運動,若點C以每秒3個單位長度向左運動,同時,點A和點B分別以每秒1個單位長度和每秒2個單位長度的速度向右運動,請問:t為何值時,AC=BC.請說明理由.
(3)點A,B,C開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和5個單位長度的速度向右運動.
請問:BC﹣AB的值是否隨著運動時間t的變化而變化?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個頂點的坐標(biāo)分別為:A(1,﹣4),B(5,﹣4),C(4,﹣1).
(1)將△ABC經(jīng)過平移得到△A1B1C1,若點C的應(yīng)點C1的坐標(biāo)為(2,5),則點A,B的對應(yīng)點A1,B1的坐標(biāo)分別為 ;
(2)在如圖的坐標(biāo)系中畫出△A1B1C1,并畫出與△A1B1C1關(guān)于原點O成中心對稱的△A2B2C2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com