【題目】某出版社出版適合中學(xué)生閱讀的科普讀物,該讀物首次出版印刷的印數(shù)不少于5000冊時,投入的成本與印數(shù)間的相應(yīng)數(shù)據(jù)如下表:

印數(shù)x(冊)

5000

8000

11000

14000

成本y(元)

28500

36000

43500

51000

(1)通過對上表中數(shù)據(jù)的探究,你發(fā)現(xiàn)這種讀物的投入成本y(元)是印數(shù)x(冊)的正比例函數(shù)?還是一次函數(shù)?并求出這個函數(shù)的表達式(不要求寫出x的取值范圍);

(2)如果出版社投入成本60000元,那么能印該讀物多少冊?

【答案】1)是一次函數(shù),yx+16000;(217600

【解析】

1)根據(jù)條件設(shè)投入成本y(元)是印數(shù)x(冊)的一次函數(shù)解析式為y=kx+b,由待定系數(shù)法求出其解即可;
2)將y=60000元代入(1)的解析式求出x的值即可.

解:(1)投入成本y(元)是印數(shù)x(冊)的一次函數(shù),

設(shè)函數(shù)解析式為:y=kx+b

由題意,得
解得:
故所求的函數(shù)關(guān)系式為yx+16000;故是一次函數(shù).
2)當y60000時,
60000x+16000
解得x=17600
答:能印該讀物17600冊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是測量一物體體積的過程:

步驟一:將180 mL的水裝進一個容量為300 mL的杯子中;

步驟二:將三個相同的玻璃球放入水中,結(jié)果水沒有滿;

步驟三:再將一個同樣的玻璃球放入水中,結(jié)果水滿溢出.

根據(jù)以上過程,推測一個玻璃球的體積在下列哪一范圍內(nèi)?(1 mL=1 cm3)(  ).

A. 10 cm3以上,20 cm3以下 B. 20 cm3以上,30 cm3以下

C. 30 cm3以上,40 cm3以下 D. 40 cm3以上,50 cm3以下

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A的坐標為(3,2),點B的坐標為(3,0).作如下操作:

①以點A為旋轉(zhuǎn)中心,將△ABO順時針方向旋轉(zhuǎn)90°,得到△AB1O1;
②以點O為位似中心,將△ABO放大,得到△A2B2O,使相似比為1∶2,且點A2在第三象限.
(1)在圖中畫出△AB1O1和△A2B2O;
(2)請直接寫出點A2的坐標:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境

在綜合與實踐課上,老師讓同學(xué)們以兩條平行線AB,CD和一塊含60°角的直角三角尺EFG(EFG90°,∠EGF60°)”為主題開展數(shù)學(xué)活動.

操作發(fā)現(xiàn)

(1)如圖(1),小明把三角尺的60°角的頂點G放在CD上,若∠221,求∠1的度數(shù);

(2)如圖(2),小穎把三角尺的兩個銳角的頂點E、G分別放在ABCD上,請你探索并說明∠AEF與∠FGC之間的數(shù)量關(guān)系;

結(jié)論應(yīng)用

(3)如圖(3),小亮把三角尺的直角頂點F放在CD上,30°角的頂點E落在AB上.若∠AEGα,則∠CFG等于______(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+10與x軸、y軸分別交于點B,C,點A的坐標為(8,0),P(x,y)是直線y=﹣x+10在第一象限內(nèi)一個動點.

(1)求△OPA的面積S與x的函數(shù)關(guān)系式,并寫出自變量的x的取值范圍;

(2)當△OPA的面積為10時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠C=90°,

(1)a=4,b=3,則c=_______;

(2)a=24,c=30,則b=_______;

(3)BC=11,AB=61,則AC=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一道因式分解題:x2-■,其中“■”是被墨跡污染看不清的單項式,這個單項式不可能是( )

A. 2x B. -2x

C. y2 D. -4y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=10,AC=16,點M是對角線AC上的一個動點,過點M作PQ⊥AC交AB于點P,交AD于點Q,將△APQ沿PQ折疊,點A落在點E處,當△BCE是等腰三角形時,AP的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,BCAD,∠B與∠C互余, AB,CD分別平移到EFEG的位置,則△EFG________三角形,若AD=2cmBC=8cm,則FG=____________

查看答案和解析>>

同步練習(xí)冊答案