7.如圖.有一艘漁船P在捕魚作業(yè)時(shí)出現(xiàn)故障,急需搶修,調(diào)度中心通知附近兩個(gè)小島A,B上的觀測(cè)點(diǎn)進(jìn)行觀測(cè),從觀測(cè)站A測(cè)得漁船P在北偏西60°的方向,同時(shí)測(cè)得搜救船C也在北偏西60°的方向,從觀測(cè)站B測(cè)得漁船P在北偏東32°的方向,測(cè)得搜救船C在北偏西45°方向,已知觀測(cè)站A在觀測(cè)站B東40里處,問(wèn)搜救船C與漁船P的距離是多少?(結(jié)果保留整數(shù),參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85;tan32°≈0.62,sin58°≈0.85;cos58°≈0.53;tan58°≈1.60;$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73).

分析 過(guò)C作CD⊥AB于D,PE⊥AB于E,連接PB,根據(jù)已知條件得到BD=CD,AD=$\sqrt{3}$CD,求得CD=20($\sqrt{3}$+1)里,AD=40+20($\sqrt{3}$+1)里,解直角三角形得到PE≈12,即可得到結(jié)論.

解答 解:過(guò)C作CD⊥AB于D,PE⊥AB于E,連接PB,
∴∠CBD=45°,∠CAD=30°,∠PBE=58°,
∴BD=CD,AD=$\sqrt{3}$CD,
∵AB=40里,
∴$\frac{CD}{40+CD}$=$\frac{\sqrt{3}}{3}$,
∴CD=20($\sqrt{3}$+1),
∴AD=40+20($\sqrt{3}$+1)里,
在Rt△PBE中,BE=$\frac{PE}{tan58°}$=$\frac{PE}{1.6}$,
在Rt△APE中,AE=$\sqrt{3}$PE,
∴$\frac{PE}{1.6}$+$\sqrt{3}$PE=40,
∴PE≈17,
∴AP=2PE=34,AC=2CD=40($\sqrt{3}$+1),
∴CP=AC-PC=109-34=75(里).
答:搜救船C與漁船P的距離是75里.

點(diǎn)評(píng) 本題考查的是解直角三角形的應(yīng)用-方向角問(wèn)題,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖1,AB是⊙O的直徑,BC是⊙O的切線,OC∥弦AD,連接BD交AC于E.
(1)求證:CD是⊙O的切線;
(2)如圖2,連AC交BD于E,若AE=CE,求tan∠ACB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在⊙O中,弦AB與弦CD相交于點(diǎn)G,OA⊥CD于點(diǎn)E,過(guò)點(diǎn)B的直線與CD的延長(zhǎng)線交于點(diǎn)F,AC∥BF.
(1)若∠FGB=∠FBG,求證:BF是⊙O的切線;
(2)若tan∠F=$\frac{3}{4}$,CD=24,求⊙O的半徑;
(3)請(qǐng)問(wèn)$\frac{{G{F^2}-G{B^2}}}{{\sqrt{2}DF•GF}}$的值為定值嗎?如是,請(qǐng)寫出計(jì)算過(guò)程,若不是請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,以△ABC的邊AB為直徑作⊙O,與BC交于點(diǎn)D,點(diǎn)E是弧BD的中點(diǎn),連接AE交BC于點(diǎn)F,∠ACB=2∠BAE.
(1)求證:AC是⊙O的切線;
(2)若sinB=$\frac{2}{3}$,BD=5,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知反比例函數(shù)y=$\frac{k}{x}$(k≠0)的圖象經(jīng)過(guò)點(diǎn)A(-1,6).
(1)求k的值;
(2)過(guò)點(diǎn)A作直線AC與函數(shù)y=$\frac{k}{x}$的圖象交于點(diǎn)B,與x軸交于點(diǎn)C,且AB=2BC,求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

12.對(duì)于任意的正數(shù)m、n定義運(yùn)算※為:m※n=$\left\{\begin{array}{l}{\sqrt{m}-\sqrt{n}(m>n)}\\{\sqrt{m}+\sqrt{n}(m<n)}\end{array}\right.$,計(jì)算(3※2)×(8※12)的結(jié)果為2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在△ABC中,以點(diǎn)C為旋轉(zhuǎn)中心,將△ABC旋轉(zhuǎn)到△A′B′C的位置,其中A′,B′分別是A,B的對(duì)應(yīng)點(diǎn),且點(diǎn)B′在AB邊上,按照上述方法旋轉(zhuǎn)△A′B′C,…,這樣共旋轉(zhuǎn)四次恰好構(gòu)成一個(gè)旋轉(zhuǎn)對(duì)稱圖形.
(1)求∠BCB′的度數(shù).
(2)判斷△BCB′的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

15.87.18°=87°10′48″.54°36′等于54.6度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)當(dāng)x≤1時(shí),化簡(jiǎn):$\sqrt{{x}^{2}-2x+1}$-$\sqrt{{x}^{2}-4x+4}$;
(2)$\frac{a-\sqrt{ab}}{\sqrt{a}-\sqrt}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案