【題目】如圖,在平行四邊形ABCD中,點G是線段AB上一點,連接CG、DG,滿足CGCD

1)如圖1,過點GGHCD于點H,若AB7,GH2,求DG;

2)如圖2,若∠DAB60°,∠DAB的角平分線交CD于點E,過點EEFAD,滿足EF+AGAD,連接DF、CF,求證:∠DCF=∠GCF

【答案】1DG2;(2)見解析.

【解析】

1)由平行四邊形的性質(zhì)和已知條件得出CG=CD=7,由勾股定理得出CH==5,得出DH=CD-CH=2,再由勾股定理即可得出結(jié)果;
2)延長EFABH,連接DH、FG,先證明四邊形ADEH是平行四邊形,再由平行線的性質(zhì)和角平分線證出∠AED=DAE,得出AD=ED,證出四邊形ADEH是菱形,得出AD=ED=EH=AH,得出ADH、DEH是等邊三角形,得出∠DHA=EDH=DEH=60°,DH=AD=DE,證出EF=GH,證明DEF≌△DHG得出∠EDF=HDGDF=DG,證出∠GDF=60°,得出GDF是等邊三角形,得出DF=GF,再證明CDF≌△CGF,即可得出∠DCF=GCF

1)∵四邊形ABCD是平行四邊形,

CDAB7,

CGCD7GH2,BHCD

CH5,

DHCDCH2,

DG2

2)延長EFABH,連接DH、FG,如圖所示:

∵四邊形ABCD是平行四邊形,

ABCD,

∴∠AED=∠EAB

EFAD,

∴四邊形ADEH是平行四邊形,

AE平分∠DAB,

∴∠DAE=∠BAE

∴∠AED=∠DAE,

ADED,

∴四邊形ADEH是菱形,

ADEDEHAH

∵∠DAB60°,

∴△ADH、△DEH是等邊三角形,

∴∠DHA=∠EDH=∠DEH60°,DHADDE

EF+AGADAHAG+GH,

EFGH

在△DEF和△DHG中,

∴△DEF≌△DHGSAS),

∴∠EDF=∠HDG,DFDG

∴∠HDG+∠FDH=∠EDF+∠FDH=∠EDH60°,即∠GDF60°,

∴△GDF是等邊三角形,

DFGF,

在△CDF和△CGF中,

,

∴△CDF≌△CGFSSS),

∴∠DCF=∠GCF

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖ABC中,ACB=90°,ABC=25°,OAB的中點. OA繞點O逆時針旋轉(zhuǎn)θ °OP0<θ<180,當BCP恰為軸對稱圖形時,θ的值為_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學了統(tǒng)計知識后,小紅就本班同學上學喜歡的出行方式進行了一次調(diào)查,圖(1)和圖(2)是她根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息解答以下問題:

1)補全條形統(tǒng)計圖,并計算出騎車部分所對應的圓心角的度數(shù).

2)若由3喜歡乘車的學生,1喜歡騎車的學生組隊參加一項活動,現(xiàn)欲從中選出2人擔任組長(不分正副),求出2人都是喜歡乘車的學生的概率,(要求列表或畫樹狀圖)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD的頂點BCx軸上,反比例函數(shù)y=﹣ x0)的圖象經(jīng)過A,E兩點,反比例函數(shù)yx0)的圖象經(jīng)過第一象限內(nèi)的DH兩點,正方形EFCH的頂點FGAD上.已知A(﹣1,a),B(﹣4,0).

1)求點C的坐標及k的值;

2)直接寫出正方形EFGH的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若數(shù)a使關(guān)于x的不等式組至少有3個整數(shù)解,且使關(guān)于y的分式方程2有非負整數(shù)解,則滿足條件的所有整數(shù)a的和是(  )

A. 14B. 15C. 23D. 24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將二次函數(shù)yx25x6x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新圖象,若直線y2x+b與這個新圖象有3個公共點,則b的值為( 。

A. 或﹣12B. 2C. 122D. 或﹣12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,CBAB,D為圓上一點,且ADOC,連接CD,AC,BDACBD交于點M

1)求證:CD為⊙O的切線;

2)若CDAD,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸的負半軸上,O是坐標原點,tanAOC=,反比例函數(shù)y=﹣的圖象經(jīng)過點C,與AB交與點D,則COD的面積的值等于_____;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題

(1)本次調(diào)查的學生有多少人?

(2)補全上面的條形統(tǒng)計圖;

(3)扇形統(tǒng)計圖中C對應的中心角度數(shù)是_____;

(4)若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?

查看答案和解析>>

同步練習冊答案