【題目】如圖,菱形OABC的一邊OAx軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tanAOC=,反比例函數(shù)y=﹣的圖象經(jīng)過點(diǎn)C,與AB交與點(diǎn)D,則COD的面積的值等于_____;

【答案】10.

【解析】分析:易證S菱形ABCO=2SCDO,再根據(jù)tanAOC的值,可以假設(shè)OF=3x推出OC=5x,可得OA=OC=5x,S菱形ABCO=AOCF=20x2,C(﹣3x,4x),可得×3x×4x=6推出x2=1,由此即可解決問題.

詳解DEAOCFAO,設(shè)CF=4x

∵四邊形OABC為菱形,ABCOAOBC

DEAO,SADO=SDEO同理SBCD=SCDE

S菱形ABCO=SADO+SDEO+SBCD+SCDES菱形ABCO=2SDEO+SCDE)=2SCDO

tanAOC=,OF=3x,OC=5x,OA=OC=5x

S菱形ABCO=AOCF=20x2

C(﹣3x4x),×3x×4x=6x2=1,S菱形ABCO=20∴△COD的面積=10

故答案為:10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,,它們依次交直線a,b于點(diǎn)A、BC和點(diǎn)D、E、F.

1)如果,,求DE的長(zhǎng).

2)如果,,,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)G是線段AB上一點(diǎn),連接CG、DG,滿足CGCD

1)如圖1,過點(diǎn)GGHCD于點(diǎn)H,若AB7,GH2,求DG

2)如圖2,若∠DAB60°,∠DAB的角平分線交CD于點(diǎn)E,過點(diǎn)EEFAD,滿足EF+AGAD,連接DF、CF,求證:∠DCF=∠GCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為改善教學(xué)條件,學(xué)校準(zhǔn)備對(duì)現(xiàn)有多媒體設(shè)備進(jìn)行升級(jí)改造,已知購買3個(gè)鍵盤和1個(gè)鼠標(biāo)需要190元;購買2個(gè)鍵盤和3個(gè)鼠標(biāo)需要220元;

1)求鍵盤和鼠標(biāo)的單價(jià)各是多少元?

2)經(jīng)過與經(jīng)銷商洽談,鍵盤打八折,鼠標(biāo)打八五折.若學(xué)校計(jì)劃購買鍵盤和鼠標(biāo)共50件,且總費(fèi)用不超過1820元,則最多可購買鍵盤多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)開展征文活動(dòng),征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個(gè)主題中選擇一個(gè),九年級(jí)每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機(jī)抽取了部分征文進(jìn)行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

(1)求本次調(diào)查共抽取了多少名學(xué)生的征文;

(2)將上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)本次抽取的3份以誠信為主題的征文分別是小義、小玉和大力的,若從中隨機(jī)選取2份以誠信為主題的征文進(jìn)行交流,請(qǐng)用畫樹狀圖法或列表法求小義和小玉同學(xué)的征文同時(shí)被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】速度分別為100km/hakm/h0a100)的兩車分別從相距s千米的兩地同時(shí)出發(fā),沿同一方向勻速前行.行駛一段時(shí)間后,其中一車按原速度原路返回,直到與另一車相遇時(shí)兩車停止.在此過程中,兩車之間的距離ykm)與行駛時(shí)間th)之間的函數(shù)關(guān)系如圖所示.下列說法:①a60;②b2;③cb+;④若s60,則b.其中說法正確的是( 。

A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)ykx+bk≠0)的圖象與反比例函數(shù)yx>0,m≠0)的圖象交于點(diǎn)C,與x軸、y軸分別交于點(diǎn)DB,已知OB=3,點(diǎn)C的橫坐標(biāo)為4,cos∠0BD

(1)求一次函數(shù)及反比例函數(shù)的表達(dá)式;

(2)將一次函數(shù)圖象向下平移,使其經(jīng)過原點(diǎn)O,與反比例函數(shù)圖象在第四象限內(nèi)的交點(diǎn)為A,連接AC,求四邊形OACB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有AB兩個(gè)轉(zhuǎn)盤,其中轉(zhuǎn)盤A被分成4等份,轉(zhuǎn)盤B被分成3等份,并在每一份內(nèi)標(biāo)上數(shù)字.現(xiàn)甲、乙兩人同時(shí)各轉(zhuǎn)動(dòng)其中一個(gè)轉(zhuǎn)盤,轉(zhuǎn)盤停止后(當(dāng)指針指在邊界線上時(shí)視為無效,重轉(zhuǎn)),若將A轉(zhuǎn)盤指針指向的數(shù)字記為xB轉(zhuǎn)盤指針指向的數(shù)字記為y,從而確定點(diǎn)P的坐標(biāo)為Pxy).

1)請(qǐng)用列表或畫樹狀圖的方法寫出所有可能得到的點(diǎn)P的坐標(biāo);

2)計(jì)算點(diǎn)P在函數(shù)y=圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,A,B為定點(diǎn),A2,﹣3),B4,﹣3),定直線lAB,Pl上一動(dòng)點(diǎn),lAB的距離為6,M,N分別為PA,PB的中點(diǎn)下列說法中:

①線段MN的長(zhǎng)始終為1;②△PAB的周長(zhǎng)固定不變;

③△PMN的面積固定不變; ④若存在點(diǎn)Q使得四邊形APBQ是平行四邊形,則QMN所在直線的距離必為9

其中正確的說法是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案