【題目】關(guān)于二次函數(shù)yx2+4x5,下列說法正確的是( 。

A.圖象與y軸的交點坐標(biāo)為(05B.圖象的對稱軸在y軸的右側(cè)

C.當(dāng)x<﹣2時,y的值隨x值的增大而減小D.圖象與x軸的兩個交點之間的距離為5

【答案】C

【解析】

通過計算自變量為0的函數(shù)值可對A進(jìn)行判斷;利用對稱軸方程可對B進(jìn)行判斷;根據(jù)二次函數(shù)的性質(zhì)對C進(jìn)行判斷;通過解x2+4x50得拋物線與x軸的交點坐標(biāo),則可對D進(jìn)行判斷.

A、當(dāng)x0時,yx2+4x5=﹣5,所以拋物線與y軸的交點坐標(biāo)為(0,﹣5),所以A選項錯誤;

B、拋物線的對稱軸為直線x=﹣=﹣2,所以拋物線的對稱軸在y軸的左側(cè),所以B選項錯誤;

C、拋物線開口向上,當(dāng)x<﹣2時,y的值隨x值的增大而減小,所以C選項正確;

D、當(dāng)y0時,x2+4x50,解得x1=﹣5,x21,拋物線與x軸的交點坐標(biāo)為(﹣50),(1,0),兩交點間的距離為1+56,所以D選項錯誤.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知,A2,0),C0,﹣1),若P為線段OA上一動點,則CP+AP的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形AOBC放置在平面直角坐標(biāo)系xOy中,邊OAy軸的正半軸上,邊OBx軸的正半軸上,拋物線的頂點為F,對稱軸交AC于點E,且拋物線經(jīng)過點A0,2),點C,點D3,0).∠AOB的平分線是OE,交拋物線對稱軸左側(cè)于點H,連接HF

1)求該拋物線的解析式;

2)在x軸上有動點M,線段BC上有動點N,求四邊形EAMN的周長的最小值;

3)該拋物線上是否存在點P,使得四邊形EHFP為平行四邊形?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)圖象如圖所示,下列結(jié)論:①abc0;②2a+b0;③ab+c0;④當(dāng)x≠1時,a+bax2+bx;⑤4acb2.其中正確的有( 。﹤

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】花粉的質(zhì)量很小,一粒某種植物花粉的質(zhì)量約為0.000037毫克,已知1=1000毫克,那么0.000037毫克可用科學(xué)記數(shù)法表示為

A. 3.7×10﹣5 B. 3.7×10﹣6 C. 37×10﹣7 D. 3.7×10﹣8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初二年級模擬開展“中國詩詞大賽”比賽,對全年級同學(xué)成績進(jìn)行統(tǒng)計后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個等級,并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合統(tǒng)計圖中的信息,回答下列問題:

1)扇形統(tǒng)計圖中“優(yōu)秀”所對應(yīng)的扇形的圓心角為   度,并將條形統(tǒng)計圖補(bǔ)充完整.

2)此次比賽有三名同學(xué)得滿分,分別是甲、乙、丙,現(xiàn)從這三名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國詩詞大賽”比賽,請用列表法或畫樹狀圖法,求出選中的兩名同學(xué)恰好是甲、丙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DEBC,,MBC上一點,AMDEN.

(1)AE=4,求EC的長;

(2)MBC的中點,SABC=36,求SADN的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,,在矩形內(nèi)有一點P,同時滿足,延長CPAD于點E,則______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC60°,DAB上一點,ACBD,PCD中點.求證:APBC

查看答案和解析>>

同步練習(xí)冊答案