【題目】如圖,在矩形ABCD中,AB=8,AD=6,點M為對角線AC上的一個動點(不與端點A,C重合),過點M作ME⊥AD,MF⊥DC,垂足分別為E,F(xiàn),則四邊形EMFD面積的最大值為( )
A. 6 B. 12 C. 18 D. 24
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,矩形OABC的長OA=,寬OC=1,將△AOC沿AC翻折得△APC.
(1)求∠PCB的度數(shù);
(2)若P,A兩點在拋物線y=﹣x2+bx+c上,求b,c的值,并說明點C在此拋物線上;
(3)(2)中的拋物線與矩形OABC邊CB相交于點D,與x軸相交于另外一點E,若點M是x軸上的點,N是y軸上的點,以點E、M、D、N為頂點的四邊形是平行四邊形,試求點M、N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BB1∥AC.動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設(shè)點D運動的時間為t秒.
(1)當t為何值時,AD=AB,并求出此時DE的長度;
(2)當△DEG與△ACB相似時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】方格紙中每個小正方形的邊長都是單位1,△OAB在平面直角坐標系中的位置如圖所示.解答問題:
(1)請按要求對△ABO作如下變換:
①將△OAB向下平移2個單位,再向左平移3個單位得到△O1A1B1;
②以點O為位似中心,位似比為2:1,將△ABC在位似中心的異側(cè)進行放大得到△OA2B2.
(2)寫出點A1,A2的坐標: , ;
(3)△OA2B2的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=-x+3與x軸、y軸分別交于A,B兩點,拋物線y=-x2+bx+c經(jīng)過B點,且與x軸交于C,D兩點(點C在左側(cè)),且C(-3,0).
(1)求拋物線的解析式;
(2)平移直線AB,使得平移后的直線與拋物線分別交于點D,E,與y軸交于點F,連接CE,CF,求△CEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,DE∥BC,點F在邊AC上,DF與BE相交于點G,且∠EDF=∠ABE.
求證:(1)△DEF∽△BDE;(2)DGDF=DBEF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點M,N的坐標分別為(﹣1,2),(2,1),若拋物線y=ax2﹣x+2(a≠0)與線段MN有兩個不同的交點,則a的取值范圍是( 。
A. a≤﹣1或≤a< B. ≤a<
C. a≤或a> D. a≤﹣1或a≥
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個四邊形被一條對角線分割成兩個三角形,如果被分割的兩個三角形相似,我們把這條對角線稱為該四邊形的為相似對角線。
(1)如圖1,正方形ABCD的邊長為4,E為AD的中點,AF=1,連結(jié)CE,CF,求證:EF為四邊形AECF的相似對角線。
(2)在四邊形ABCD中,∠BAD=120°,AB=3,AC=,AC平分∠BAD,且AC是四邊形ABCD的相似對角線,求BD的長。
(3)如圖2,在矩形ABCD中,AB=6,BC=4,點E是線段AB(不取端點A,B)上的一個動點,點F是射線AD上的一個動點,若EF是四邊形AECF的相似對角線,求BE的長.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,Rt△ABC的三個頂點A(-2,2),B(0,5),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請畫出△A1B1C的圖形.
(2)平移△ABC,使點A的對應(yīng)點A2坐標為(-2,-6),請畫出平移后對應(yīng)的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點旋轉(zhuǎn)可得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com