精英家教網 > 初中數學 > 題目詳情

【題目】在Rt△ABC中,∠ACB=90°,AC=2,BC=4.點D是線段BC上的一個動點.點D與點B、C不重合,過點D作DE⊥BC交AB于點E,將△ABC沿著直線DE翻折,使點B落在直線BC上的F點.

(1)設∠BAC=α(如圖①),求∠AEF的大。唬ㄓ煤恋拇鷶凳奖硎荆

(2)當點F與點C重合時(如圖②),求線段DE的長度;

(3)設BD=x,△EDF與△ABC重疊部分的面積為S,試求出S與x之間函數關系式,并寫出自變量x的取值范圍.

【答案】(1)1800-2α.(2)1;(3)S=

【解析】

試題分析:(1)首先在Rt△ABC中,判斷出∠ABC=90°-∠BAC=90°-α;然后根據翻折的性質,可得∠EFB=∠EBF;最后根據三角形外角的性質,可得∠AEF=∠EFB+∠EBF,據此解答即可.

(2)當點F與點C重合時,BD=CD時,判斷出AC∥ED,即可判斷出AE=BE;然后根據三角形中位線定理,求出線段DE的長度是多少即可.

(3)根據題意,分兩種情況:①當點F在AC的右側時,即0<x≤2時;②當點F在AC的左側時,即2<x<4時;然后分類討論,求出S與x之間函數關系式,并寫出自變量x的取值范圍即可.

試題解析:(1)如圖①,

,

在Rt△ABC中,

∠ABC=90°-∠BAC=90°-α,

∵將△ABC沿著直線DE翻折,使點B落在直線BC上的F點,

∴∠EFB=∠EBF,

∴∠AEF=∠EFB+∠EBF=2∠EBF=2(900-∠BAC)=1800-2α.

(2)如圖②,

,

當點F與點C重合時,BD=CD時,

∵ED⊥BC,AC⊥BC,

∴AC∥ED,

∴AE=BE,

∴DE=AC=×2=1.

(3)當點F與點C重合時,

BD=CD=BC=×4=2.

①如圖③,

,

當點F在AC的右側時,即0<x≤2時,重疊部分是△EDF.

∵AC∥ED,

∴△ABC∽△EDB,

,

∴ED=,

∴S△EDF=×ED×DF=××x=x2,(0<x≤2).

②如圖④,

當點F在AC的左側時,即2<x<4時,

設EF與AC相交于點M,

則重疊部分是四邊形EDCM.

∴FC=FD-CD=x-(4-x)=2x-4

∵∠ACB=∠MCF=90°,∠EFB=∠EBF,

∴△ABC∽△MFC,

,

,

∴MC=x-2,

∴S四邊形EDCF=S△EDF-S△EDF

=×x×-×(x-2)×(2x-4)

=-x2+4x-4,(2<x<4).

綜上,可得

S=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】按下面的程序計算:當輸入x=100 時,輸出結果是299;當輸入x=50時,輸出結果是446;如果輸入 x 的值是正整數,輸出結果是257,那么滿足條件的x的值最多有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】生活中處處有數學,下列原理運用錯誤的是

A.建筑工人砌墻時拉的參照線是運用兩點之間線段最短的原理

B.修理損壞的椅子腿時斜釘的木條是運用三角形穩(wěn)定性的原理

C.測量跳遠的成績是運用垂線段最短的原理

D.將車輪設計為圓形是運用了圓的旋轉對稱性原理

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線y=-x+3x軸、y軸相交于AB兩點,點C在線段OA上,將線段CB繞著點C順時針旋轉90°得到CD,此時點D恰好落在直線AB上,過點DDEx軸于點E

1)求證:△BOC≌△CED;

2)如圖2,將△BCD沿x軸正方向平移得△B'C'D',當B'C'經過點D時,求△BCD平移的距離及點D的坐標;

3)若點Py軸上,點Q在直線AB上,是否存在以C、D、P、Q為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將圖中的正方形剪開得到圖,圖中共有4個正方形;將圖中一個正方形剪開得到圖,圖中共有7個正方形;將圖中一個正方形剪開得到圖,圖中共有10個正方形……如此下去,則第2018個圖中共有正方形的個數為( )

A.2018B.6049C.6052D.6055

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:

19﹣(﹣5)﹣(+2+(﹣4)﹣5

2)﹣|7|++3)﹣5

3|1|﹣(+2)﹣(﹣2.75

4)﹣9÷3+×12+(﹣32

5)﹣(﹣3+(﹣9×3+17×(﹣3

6)(÷(﹣

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小張第一次用180元購買了8套兒童服裝,以一定價格出售.如果以每套兒童服裝80元的價格為標準,超出的記作整數,不足的記作負數,記錄如下(單位:元):

請通過計算說明

(1)小張賣完這8套兒童服裝后是盈利還是虧損?盈利(或虧損)了多少錢?

(2)每套兒童服裝的平均售價是多少元?

(3)小張第二次用第一次的進價再次購買900元的兒童服裝,如果他預計第二次每套服裝的平均售價75元,按他的預計第二次售價可獲利多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知,之間的距離為3, 之間的距離為6, 分別等邊三角形的三個頂點,則此三角形的邊長為__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在菱形ABCD中,B=60,E是邊CD上一點,以CE為邊作等邊△CEF

1 如圖1,當CEAD CF=時,求菱形ABCD的面積;

2 如圖2,過點ECEF的平分線交CFH,連接DH,并延長DHAC的延長交于點P,若ECD=15,求證:

查看答案和解析>>

同步練習冊答案