【題目】如圖,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分別交AB,BC,BD于E,F(xiàn),G,連接DE,DF.

(1)求證:DE=DF;

2)若∠ABC=30°,C=45°DE=4,求CF的長.

【答案】(1)證明見解析;

(2)CF的長為2+

【解析】試題分析:(1)本題利用垂直平分線的性質(zhì),角平分線的性質(zhì)得出結(jié)論,證明四邊形BFDE為菱形即可;(2)本題要根據(jù)菱形得出三角形DFC的角的度數(shù),作垂直構(gòu)造特殊的三角形解決問題即可.

試題解析:(1)證明:∵EF垂直平分BD,

∴EB=ED,F(xiàn)B=FD.

∵BD平分∠ABC交AC于D,

∴∠ABD=∠CBD.

∵∠ABD+∠BEG=90°,∠CBD+∠BFG=90°,

∴∠BEG=∠BFG.

∴BE=BF.

∴四邊形BFDE是菱形.

∴DE=DF.

(2)解:過D作DH⊥CF于H.

∵四邊形BFDE是菱形,

∴DF∥AB,DE=DF=4.

在Rt△DFH中,∠DFC=∠ABC=30°,

∴DH=2.

∴FH=

在Rt△CDH中,∠C=45°,

∴DH=HC=2.

∴CF=2+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)AB、C,請(qǐng)?jiān)诰W(wǎng)格中進(jìn)行下列操作:

1)請(qǐng)?jiān)趫D中確定該圓弧所在圓心D點(diǎn)的位置,D點(diǎn)坐標(biāo)為   ;

2)連接AD、CD,則⊙D的半徑為   ;扇形DAC的圓心角度數(shù)為   ;

3)若扇形DAC是某一個(gè)圓錐的側(cè)面展開圖,求該圓錐的底面半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題:如圖1,在四邊形ABCD中,點(diǎn)PAB上一點(diǎn),∠DPC=A=B=90°.

求證:AD·BC=AP·BP

(2)探究:如圖2,在四邊形ABCD中,點(diǎn)PAB上一點(diǎn),當(dāng)∠DPC=A=B=θ時(shí),上述結(jié)論是否依然成立?說明理由.

(3)應(yīng)用:請(qǐng)利用(1)(2)獲得的經(jīng)驗(yàn)解決問題:

如圖3,在ABD中,AB=12,AD=BD=10.點(diǎn)P以每秒1個(gè)單位長度的速度,由點(diǎn)A出發(fā),沿邊AB向點(diǎn)B運(yùn)動(dòng),且滿足∠DPC=A.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)以D為圓心,以DC為半徑的圓與AB相切,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,濕地景區(qū)岸邊有三個(gè)觀景臺(tái)、、.已知米,米,點(diǎn)位于點(diǎn)的南偏西方向,點(diǎn)位于點(diǎn)的南偏東方向.

1)求的面積;

2)景區(qū)規(guī)劃在線段的中點(diǎn)處修建一個(gè)湖心亭,并修建觀景棧道.試求間的距離.(結(jié)果精確到0.1米)

(參考數(shù)據(jù):,,,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線ly=2x+2m(m>0)x,y軸分別交于A.B兩點(diǎn),點(diǎn)M是雙曲線(x>0)上一點(diǎn),分別連接MA、MB.

(1)如圖,當(dāng)點(diǎn)A(,0)時(shí),恰好AB=AM∠MAB=90°,試求M的坐標(biāo);

(2)如圖,當(dāng)m=3時(shí),直線l與雙曲線交于C.D兩點(diǎn),分別連接OC、OD,試求△OCD面積;

(3)如圖,在雙曲線上是否存在點(diǎn)M,使得以AB為直角邊的△MAB△AOB相似?如果存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,畫一條平行于BC的直線,使其將△ABC分成兩部分,且所分三角形與梯形面積比為1:3;

(2)如圖②,△ABCAB=4,AC=3,BC=6D是△ABCAC邊上的點(diǎn),AD=2,過點(diǎn)D畫一條直線l將△ABC分成兩部分,l與△ABC另一邊的交點(diǎn)為點(diǎn)P,使其所分的一個(gè)三角形與△ABC相似,并求出DP的長;

(3)如圖③所示,在等腰△ABC中,CA=CB=10AB=12.在△ABC中放入正方形DEMN和正方形EFPH,使得DE.EF在邊AB上,點(diǎn)P.N分別在邊CB.CA上,若較大正方形的邊長為a,請(qǐng)用含a的代數(shù)式表示較小正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,AB=" 3" cmBC=" 4" cm.點(diǎn)P從點(diǎn)A出發(fā),以1 cms的速度沿AB運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),以2 cms的速度沿BC運(yùn)動(dòng).當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).

1)試寫出△PBQ的面積 S cm2)與動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)間 t s)之間的函數(shù)表達(dá)式;

2)運(yùn)動(dòng)時(shí)間 t 為何值時(shí),△PBQ的面積最大?最大值是多少?.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠C90°,AC16cm,BC8cm,一動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿著CB方向以2cm/s的速度運(yùn)動(dòng),另一動(dòng)點(diǎn)QA出發(fā)沿著AC邊以4cm/s的速度運(yùn)動(dòng),PQ兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為ts).

1)若PCQ的面積是ABC面積的,求t的值?

2PCQ的面積能否與四邊形ABPQ面積相等?若能,求出t的值;若不能,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案