【題目】如圖,ABC中,∠C90°AC16cm,BC8cm,一動點P從點C出發(fā)沿著CB方向以2cm/s的速度運動,另一動點QA出發(fā)沿著AC邊以4cm/s的速度運動,PQ兩點同時出發(fā),運動時間為ts).

1)若PCQ的面積是ABC面積的,求t的值?

2PCQ的面積能否與四邊形ABPQ面積相等?若能,求出t的值;若不能,說明理由.

【答案】(1) 2s;(2)不能.

【解析】

1)根據(jù)三角形的面積公式可以得出△ABC面積為:8×16=64,△PCQ的面積為2t164t),由題意列出方程解答即可;

2)由等量關(guān)系SPCQSABC列方程求出t的值,但方程無解.

1)∵SPCQ2t164t),SABC8×16=64,∴2t164t=64,整理得:t24t+4=0,解得:t=2

答:當t=2s時△PCQ的面積為△ABC面積的;

2)當△PCQ的面積與四邊形ABPQ面積相等,即:當SPCQSABC時,2t164t=64,整理得:t24t+8=0,△=(﹣424×1×8=160,∴此方程沒有實數(shù)根,∴△PCQ的面積不能與四邊形ABPQ面積相等.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】有兩張完全重合的矩形紙片,將其中一張繞點A順時針旋轉(zhuǎn)90°后得到矩形AMEF(如圖1),連接BD,MF,若BD4cm,∠ADB30°

1)試探究線段BD與線段MF的數(shù)量關(guān)系和位置關(guān)系,并說明理由;

2)把△BCD與△MEF剪去,將△ABD繞點A順時針旋轉(zhuǎn)得△AB1D1,邊AD1FM于點K(如圖2),設旋轉(zhuǎn)角為ββ90°),當△AFK為等腰三角形時,求β的度數(shù).

3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F2M2AD交于點P,A2M2BD交于點N,當NPAB時,求平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線x軸交于點B,與y軸交于點C,二次函數(shù)的圖象經(jīng)過點B,C兩點,且與x軸的負半軸交于點A,動點D在直線BC下方的二次函數(shù)圖象上.

(1)求二次函數(shù)的表達式;

(2)如圖1,連接DC,DB,BCD的面積為S,S的最大值;

(3)如圖2,過點DDMBC于點M,是否存在點D,使得CDM中的某個角恰好等于∠ABC2倍?若存在,直接寫出點D的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,CD是弦,ABCD于點E,OFAC于點F,BEOF

1)求證:AFO≌△CEB;

2)若BE4,CD8,求:

①⊙O的半徑;

②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,則下列關(guān)系正確的是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是我市某小學,在位于學校南偏西15°方向距離120米的C點處有一消防車.某一時刻消防車突然接到報警電話,告知在位于C點北偏東75°方向的F點處突發(fā)火災,消防隊必須立即沿路線CF趕往救火.已知消防車的警報聲傳播半徑為110米,問消防車的警報聲對學校是否會造成影響?若會造成影響,已知消防車行駛的速度為每小時60千米,則對學校的影響時間為幾秒?(≈3.6,結(jié)果精確到1秒)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將拋物線向右平移2個單位,得到拋物線的圖象是拋物線對稱軸上的一個動點,直線平行于y,分別與直線、拋物線交于點A是以點A或點B為直角頂點的等腰直角三角形,求滿足條件的t的值, ______ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中正方形OABC,點A的坐標為(1,2),則點C的坐標 __

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,已知AD=4AB=3,點P是直線AD上的一點,PEAC,PFBDE,F分別是垂足,AGBD與點G,

(1) 如圖P在線段AD上,求PE+PF的值;

(2) 如圖P在直線AD上,求PEPF的值.

查看答案和解析>>

同步練習冊答案