【題目】如圖,△ABC中,∠C=90°,AC=16cm,BC=8cm,一動點P從點C出發(fā)沿著CB方向以2cm/s的速度運動,另一動點Q從A出發(fā)沿著AC邊以4cm/s的速度運動,P、Q兩點同時出發(fā),運動時間為t(s).
(1)若△PCQ的面積是△ABC面積的,求t的值?
(2)△PCQ的面積能否與四邊形ABPQ面積相等?若能,求出t的值;若不能,說明理由.
【答案】(1) 2s;(2)不能.
【解析】
(1)根據(jù)三角形的面積公式可以得出△ABC面積為:8×16=64,△PCQ的面積為2t(16﹣4t),由題意列出方程解答即可;
(2)由等量關(guān)系S△PCQS△ABC列方程求出t的值,但方程無解.
(1)∵S△PCQ2t(16﹣4t),S△ABC8×16=64,∴2t(16﹣4t)=64,整理得:t2﹣4t+4=0,解得:t=2.
答:當t=2s時△PCQ的面積為△ABC面積的;
(2)當△PCQ的面積與四邊形ABPQ面積相等,即:當S△PCQS△ABC時,2t(16﹣4t)=64,整理得:t2﹣4t+8=0,△=(﹣4)2﹣4×1×8=﹣16<0,∴此方程沒有實數(shù)根,∴△PCQ的面積不能與四邊形ABPQ面積相等.
科目:初中數(shù)學 來源: 題型:
【題目】有兩張完全重合的矩形紙片,將其中一張繞點A順時針旋轉(zhuǎn)90°后得到矩形AMEF(如圖1),連接BD,MF,若BD=4cm,∠ADB=30°.
(1)試探究線段BD與線段MF的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(2)把△BCD與△MEF剪去,將△ABD繞點A順時針旋轉(zhuǎn)得△AB1D1,邊AD1交FM于點K(如圖2),設旋轉(zhuǎn)角為β(0°<β<90°),當△AFK為等腰三角形時,求β的度數(shù).
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F2M2與AD交于點P,A2M2與BD交于點N,當NP∥AB時,求平移的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線與x軸交于點B,與y軸交于點C,二次函數(shù)的圖象經(jīng)過點B,C兩點,且與x軸的負半軸交于點A,動點D在直線BC下方的二次函數(shù)圖象上.
(1)求二次函數(shù)的表達式;
(2)如圖1,連接DC,DB,設△BCD的面積為S,求S的最大值;
(3)如圖2,過點D作DM⊥BC于點M,是否存在點D,使得△CDM中的某個角恰好等于∠ABC的2倍?若存在,直接寫出點D的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,CD是弦,AB⊥CD于點E,OF⊥AC于點F,BE=OF.
(1)求證:△AFO≌△CEB;
(2)若BE=4,CD=8,求:
①⊙O的半徑;
②求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是我市某小學,在位于學校南偏西15°方向距離120米的C點處有一消防車.某一時刻消防車突然接到報警電話,告知在位于C點北偏東75°方向的F點處突發(fā)火災,消防隊必須立即沿路線CF趕往救火.已知消防車的警報聲傳播半徑為110米,問消防車的警報聲對學校是否會造成影響?若會造成影響,已知消防車行駛的速度為每小時60千米,則對學校的影響時間為幾秒?(≈3.6,結(jié)果精確到1秒)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將拋物線向右平移2個單位,得到拋物線的圖象是拋物線對稱軸上的一個動點,直線平行于y軸,分別與直線、拋物線交于點A、若是以點A或點B為直角頂點的等腰直角三角形,求滿足條件的t的值,則 ______ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,已知AD=4,AB=3,點P是直線AD上的一點,PE⊥AC,PF⊥BD,E,F分別是垂足,AG⊥BD與點G,
(1) 如圖①點P在線段AD上,求PE+PF的值;
(2) 如圖②點P在直線AD上,求PEPF的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com