6、(1)若OC為∠AOB的平分線,點(diǎn)P在OC上,PE⊥OA,PF⊥OB,垂足分別為E,F(xiàn),則PE=
PF
根據(jù)是角平分線上的點(diǎn)到角的兩邊的距離相同

(2)如圖所示,若在∠AOB內(nèi)有一點(diǎn)P,PE⊥OA,PF⊥OB,垂足分別為E,F(xiàn),且PE=PF,則點(diǎn)P在
∠AOB的平分線上
,根據(jù)是
到角的兩邊距離相等的點(diǎn)在角的平分線上
分析:根據(jù)角平分線的性質(zhì)和逆定理填空.
解答:解:(1)PF;角平分線上的點(diǎn)到角的兩邊的距離相同;
(2)∠AOB的平分線上;到角的兩邊距離相等的點(diǎn)在角的平分線上.
點(diǎn)評(píng):此題主要考查角平分線的性質(zhì)和逆定理:角平分線上的點(diǎn)到角的兩邊的距離相同;到角的兩邊距離相等的點(diǎn)在角的平分線上.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平行四邊形AOCD中,已知AO=4cm,OC=1cm,∠ADC=50°.以點(diǎn)O為原點(diǎn),OC精英家教網(wǎng)為x軸,建立如圖所示的直角坐標(biāo)系.
(1)寫(xiě)出平行四邊形AOCD四個(gè)頂點(diǎn)的坐標(biāo)(精確到0.1);
(2)設(shè)點(diǎn)F(x,0)是x右半軸上的一個(gè)動(dòng)點(diǎn),兩直線AF、DC交于點(diǎn)E.
①若DE為z(cm);試求z(cm)與x(cm)之間的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
②當(dāng)點(diǎn)F運(yùn)動(dòng)到什么位置(用坐標(biāo)表示并精確到0.1)時(shí),△AED是等腰三角形,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中直線AC交x軸于點(diǎn)A,交y軸于點(diǎn)C,過(guò)點(diǎn)C作直線CB⊥AC交x軸于點(diǎn)B,且AB=25,AO:CO=3:4,點(diǎn)P在線段OC上,且PO、PC的長(zhǎng)是關(guān)于x的方程x2-12x+32=0的兩根(PO<PC)
(1)求AC、BC的長(zhǎng);
(2)若M為線段BC的中點(diǎn),求直線PM的解析式;
(3)在平面內(nèi)是否存在點(diǎn)Q,使以點(diǎn)A、C、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知梯形AOCD在直角坐標(biāo)系中的位置如圖1所示,其中AD∥OC,AO⊥OC,且CD=5,若C點(diǎn)的坐標(biāo)為C(5,0),tan∠DCO=
43

(1)求D點(diǎn)的坐標(biāo)及過(guò)C、D、O三點(diǎn)的拋物線解析式;
(2)動(dòng)點(diǎn)P在線段OA上自O(shè)點(diǎn)出發(fā)向A點(diǎn)運(yùn)動(dòng),速度為每秒1個(gè)單位,同時(shí)動(dòng)點(diǎn)Q自A點(diǎn)出發(fā)以相同的速度,沿折線A-D-C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)另一點(diǎn)也立即停止運(yùn)動(dòng).設(shè)△APQ的面積為S,求S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫(xiě)出相應(yīng)的t的取值范圍.
(3)當(dāng)(2)中的S取最大值時(shí),過(guò)Q作QE⊥x軸于E,此時(shí),拋物線上是否存在點(diǎn)M,使S△OPM=S△QEM?若存在,求出M的坐標(biāo);若不存在,說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•延慶縣一模)在平面直角坐標(biāo)系xOy中,二次函數(shù)y1=mx2-(2m+3)x+m+3與x軸交于點(diǎn)A、點(diǎn)B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(其中m>0).
(1)求:點(diǎn)A、點(diǎn)B的坐標(biāo)(含m的式子表示);
(2)若OB=4•AO,點(diǎn)D是線段OC(不與點(diǎn)O、點(diǎn)C重合)上一動(dòng)點(diǎn),在線段OD的右側(cè)作正方形ODEF,連接CE、BE,設(shè)線段OD=t,△CEB的面積為S,求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC,∠ABC=90°,CO平分∠ACB交于AB于O,D為AC上一點(diǎn),且CD=CB,E為AO上一點(diǎn),OE=OB,連接DE
①試判斷直線DE與OC的位置關(guān)系,并證明你的結(jié)論
②若AD=4,CD=6,求AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案