【題目】選用適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>
(1)x-4x-3 =0 (2)3x-7x-6 =0 (3)
【答案】(1)x=2+ ,x=2;(2)x= ,x=3;(3)x=3,x=1
【解析】
(1)將原式常數(shù)項-3移到方程右邊,然后兩邊同時加上4,左邊化為完全平方式,右邊合并為一個常數(shù),開方得到兩個一元一次方程,求出一次方程的解即可得到原方程的解;
(2)將方程左邊的多項式利用十字相乘法分解因式,利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程,求出一次方程的解即可得到原方程的解;
(3)方程左邊提取公因式x-3化為積的形式,利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程,求出一次方程的解即可得到原方程的解.
(1)x4x3=0,
移項得:x4x=3,
配方得:x4x+4=7,即(x2) =7,
可得x2=±,
∴x=2+ ,x=2;
(2)3x7x6=0,
因式分解得:(3x+2)(x3)=0,
可得3x+2=0或x3=0,
解得:x= ,x=3;
(3)(x3) +2x(x3)=0,
因式分解得:(x3)[(x3)+2x]=0,即(x3)(3x3)=0,
可得x3=0或3x3=0,
解得:x=3,x=1
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2016年泉州市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯誤的是( 。
A. 平均數(shù)為160 B. 中位數(shù)為158 C. 眾數(shù)為158 D. 方差為20.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個工程隊共同承擔(dān)一項筑路任務(wù),甲隊單獨(dú)施工完成此項任務(wù)比乙隊單獨(dú)施工完成此項任務(wù)多用10天,且甲隊單獨(dú)施工45天和乙隊單獨(dú)施工30天的工作量相同.
(1)甲、乙兩隊單獨(dú)完成此項任務(wù)各需多少天?
(2)若甲、乙兩隊共同工作了3天后,乙隊因設(shè)備檢修停止施工,由甲隊繼續(xù)施工,為了不影響工程進(jìn)度,甲隊的工作效率提高到原來的2倍,要使甲隊總的工作量不少于乙隊的工作量的2倍,那么甲隊至少再單獨(dú)施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(-1,0),B(4,0),C(0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,點(diǎn)P是線段AB上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M.
(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;
(2)在點(diǎn)P運(yùn)動過程中,是否存在點(diǎn)Q,使得△BQM是直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由;
(3)連接AC,將△AOC繞平面內(nèi)某點(diǎn)H順時針旋轉(zhuǎn)90°,得到△A1O1C1,點(diǎn)A、O、C的對應(yīng)點(diǎn)分別是點(diǎn)A、O1、C1、若△A1O1C1的兩個頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“和諧點(diǎn)”,請直接寫出“和諧點(diǎn)”的個數(shù)和點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程(m-1)x2+(m+1)x+3m-1=0,當(dāng)m_________時,是一元一次方程;當(dāng)m_________時,是一元二次方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,點(diǎn)與點(diǎn)在同側(cè),,且,過點(diǎn)作交于點(diǎn)為的中點(diǎn),連接.
(1)如圖1,當(dāng)時,線段與的數(shù)量關(guān)系是 ;
(2)如圖2,當(dāng)時,試探究線段與的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,當(dāng)時,求的值.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BC是⊙O的弦,A是⊙O外一點(diǎn),△ABC為正三角形,D為BC的中點(diǎn),M為⊙O上一點(diǎn).
(1)若AB是⊙O的切線,求∠BMC;
(2)在(1)的條件下,若E,F分別是AB,AC上的兩個動點(diǎn),且EDF120,⊙O的半徑為2,試問BECF的值是否為定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為4,B是⊙O外一點(diǎn),連接OB,且OB=6,過點(diǎn)B作⊙O的切線BD,切點(diǎn)為D,延長BO交⊙O于點(diǎn)A,過點(diǎn)A作切線BD的垂線,垂足為C.
(1)求證:AD平分∠BAC;
(2)求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com