【題目】如圖,∠A=∠B=90°,E是AB上的一點,且AE=BC,∠1=∠2.
求證:△CED是等腰直角三角形
證明:∵∠1=∠2( )
∴EC= (在一個三角形中,等角對等邊)
∵∠A=∠B=90°,AE=BC
∴△AED≌△BCE( )
∴∠AED=∠ ( )
∵∠BCE+∠BEC=90°
∠ +∠BEC=90°(等量代換)
∴∠DEC=90°.
∴△CED是等腰直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形網(wǎng)格中(網(wǎng)格中的每個小正方形邊長是1),△ABC的頂點均在格點上,請在所給的直角坐標(biāo)系中解答下列問題:
(1)試作出△ABC以A為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△AB1C1;點B1的坐標(biāo)為 ;
(2)作△ABC關(guān)于原點O成中心對稱的△A2B2C2;點B2的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】彈簧原長(不掛重物)15cm,彈簧總長L(cm)與重物質(zhì)量x(kg)的關(guān)系如下表所示:
彈簧總長L(cm) | 16 | 17 | 18 | 19 | 20 |
重物質(zhì)量x(kg) | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 |
當(dāng)重物質(zhì)量為4kg(在彈性限度內(nèi))時,彈簧的總長L(cm)是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PB為⊙O的切線,B為切點,直線PO交⊙于點E、F,過點B作PO的垂線BA,垂足為點D,交⊙O于點A,延長AO與⊙O交于點C,連接BC,AF.
(1)求證:直線PA為⊙O的切線;
(2)試探究線段EF、OD、OP之間的等量關(guān)系,并加以證明;
(3)若BC=6,tan∠F=,求cos∠ACB的值和線段PE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”(如圖(1)所示).圖(2)由弦圖變化得到,它是由八個全等的直角三角形拼接而成的記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若EF=4,則S1+S2+S3的值是( )
A.32B.38C.48D.80
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點O(0,0),點A(5,0),點B(0,3).以點A為中心,順時針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點O,B,C的對應(yīng)點分別為D,E,F.
(1)如圖①,當(dāng)點D落在BC邊上時,求點D的坐標(biāo);
(2)如圖②,當(dāng)點D落在線段BE上時,AD與BC交于點H.
①求證△ADB≌△AOB;
②求點H的坐標(biāo).
(3)記K為矩形AOBC對角線的交點,S為△KDE的面積,求S的取值范圍(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商廈用8萬元購進(jìn)紀(jì)念運動休閑衫,面市后供不應(yīng)求,商廈又用17.6萬元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但單價貴了8元,商廈銷售這種運動休閑衫時每件定價都是100元,最后剩下的150件按八折銷售,很快售完.
(1)商廈第一批和第二批各購進(jìn)休閑衫多少件?
(2)請問在這兩筆生意中,商廈共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長都是1,點A、B、C、D都在格點上.
(1)線段AB的長是______;
(2)在圖中畫出一條線段EF,使EF的長為,并判斷AB、CD、EF三條線段的長能否成為一個直角三角形三邊的長?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com