【題目】如圖,Rt△ABC中,∠ACB=90°,斜邊AB邊上的高CD與角平分線AE交于點F,經(jīng)過垂足D的直線分別交直線CA,BC于點M,N.
(1)若AC=3,BC=4,AB=5,求CD的長;
(2)當(dāng)∠AMN=32°,∠B=38°時,求∠MDB的度數(shù);
(3)當(dāng)∠AMN=∠BDN時,寫出圖中所有與∠CDN相等的角,并選擇其中一組進行證明.
【答案】(1)CD;(2)∠MDB=160°;(3)與∠CDN相等的角有∠AFD,∠CFE,∠AEC,∠MNC;證明見解析.
【解析】
(1)根據(jù)三角形面積公式即可得到結(jié)論;
(2)根據(jù)三角形的內(nèi)角和定理求出∠MNC,進而得出∠MNB,再利用三角形外角的性質(zhì)即可得到結(jié)論;
(3)首先根據(jù)角平分線的定義和平行線的判定和性質(zhì)證明AE∥MN,然后結(jié)合同角的余角相等可證明所有結(jié)論.
解:(1)在Rt△ABC中,∠ACB=90°,
∴S△ABCACBC3×4=6.
∵CD是斜邊AB上是高,
∴S△ABCABCD5×CD=6,
∴CD;
(2)∵∠ACB=90°,∠AMN=32°,
∴∠MNC=180°﹣∠ACB﹣∠AMN=58°,
∴∠MNB=180°﹣∠MNC=122°,
∴∠MDB=∠MNB+∠B=122°+38°=160°;
(3)與∠CDN相等的角有∠AFD,∠CFE,∠AEC,∠MNC;
理由:∵∠AMN=∠BDN,∠BDN=∠ADM,
∴∠AMN=∠ADM,
∴∠CAB=∠AMN+∠ADM=2∠AMN,
∵AE是∠CAB的角平分線,
∴∠CAB=2∠CAE,
∴∠AMN=∠CAE,
∴AE∥MN,
∴∠CDN=∠AFD=∠CFE,
∵∠ACB=90°,
∴∠AMN+∠MNC=90°,
∵CD⊥AB,
∴∠BDN+∠CDN=90°,
∵∠AMN=∠BDN,
∴∠CDN=∠MNC,
∵AE∥MN,
∴∠AEC=∠MNC,
∴∠CDN=∠AEC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點在數(shù)軸上對應(yīng)的數(shù)為,點對應(yīng)的數(shù)為,為原點,且、滿足:.試解答下列問題:
(1)求數(shù)軸上線段的長度;
(2)若點以每秒2個單位長度的速度沿數(shù)軸向右運動,則經(jīng)過秒后點表示的數(shù)為 ;(用含的代數(shù)式表示)
(3)若點,都以每秒2個單位長度的速度沿數(shù)軸向右運動,而點不動,經(jīng)過秒后其中一個點是一條線段的中點,求此時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形,點是線段延長線上一點,聯(lián)結(jié),其中.若將繞著點逆時針旋轉(zhuǎn)使得與第一次重合時,點落在點(圖中未畫出).求:在此過程中,
(1)旋轉(zhuǎn)的角度等于 ______________.
(2)線段掃過的平面部分的面積為__________(結(jié)果保留)
(3)聯(lián)結(jié),則的面積為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某九年一貫制學(xué)校在六年級和九年級的男生中分別隨機抽取40名學(xué)生測量他們的身高,將數(shù)據(jù)分組整理后,繪制的頻數(shù)分布直方圖如下:其中兩條縱向虛線上端的數(shù)值分別是每個年級抽出的40名男生身高的平均數(shù),根據(jù)統(tǒng)計圖提供的信息,下列結(jié)論不合理的是( )
A. 六年級40名男生身高的中位數(shù)在第153~158cm組
B. 可以估計該校九年級男生的平均身高比六年級的平均身高高出18.6cm
C. 九年級40名男生身高的中位數(shù)在第168~173cm組
D. 可以估計該校九年級身高不低于158cm但低于163cm的男生所占的比例大約是5%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小紅用一張長方形紙片ABCD進行折紙,已知該紙片寬AB為8cm,長BC為10cm.當(dāng)小紅折疊時,頂點D落在BC邊上的點F處(折痕為AE).想一想,此時EC有多長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=60°,點E、F分別為AD、DC上的動點,∠EBF=60°,點E從點A向點D運動的過程中,AE+CF的長度( )
A. 逐漸增加 B. 逐漸減小
C. 保持不變且與EF的長度相等 D. 保持不變且與AB的長度相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點C在線段AB上,線段AC=10厘米,BC=6厘米,點M,N分別是AC,BC的中點.
(1)求線段MN的長度;
(2)根據(jù)第(1)題的計算過程和結(jié)果,設(shè)AC+BC=a,其他條件不變,求MN的長度;
(3)動點P、Q分別從A、B同時出發(fā),點P以2cm/s的速度沿AB向右運動,終點為B,點Q以1cm/s的速度沿AB向左運動,終點為A,當(dāng)一個點到達終點,另一個點也隨之停止運動,求運動多少秒時,C、P、Q三點有一點恰好是以另兩點為端點的線段的中點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,P是對角線BD上的點,點E在AB上,且PA=PE.
(1)求證:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,試探究∠CPE與∠ABC之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BD是矩形ABCD的對角線.
(1)用直尺和圓規(guī)作線段BD的垂直平分線,分別交AD、BC于E、F(保留作圖痕跡,不寫作法和證明).
(2)連結(jié)BE,DF,問四邊形BEDF是什么四邊形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com