【題目】某九年一貫制學(xué)校在六年級(jí)和九年級(jí)的男生中分別隨機(jī)抽取40名學(xué)生測(cè)量他們的身高,將數(shù)據(jù)分組整理后,繪制的頻數(shù)分布直方圖如下:其中兩條縱向虛線上端的數(shù)值分別是每個(gè)年級(jí)抽出的40名男生身高的平均數(shù),根據(jù)統(tǒng)計(jì)圖提供的信息,下列結(jié)論不合理的是( )
A. 六年級(jí)40名男生身高的中位數(shù)在第153~158cm組
B. 可以估計(jì)該校九年級(jí)男生的平均身高比六年級(jí)的平均身高高出18.6cm
C. 九年級(jí)40名男生身高的中位數(shù)在第168~173cm組
D. 可以估計(jì)該校九年級(jí)身高不低于158cm但低于163cm的男生所占的比例大約是5%
【答案】A
【解析】根據(jù)已知,六年級(jí)40名男生身高的中位數(shù)在148~153cm組;該校九年級(jí)男生的平均身高比六年級(jí)的平均身高高出170.4-151.8=18.6cm;九年級(jí)40名男生身高的中位數(shù)在第168~173cm組;估計(jì)該校九年級(jí)身高不低于158cm但低于163cm的男生所占的比例大約是.
(1)40個(gè)數(shù)據(jù)中,中位數(shù)應(yīng)該在第20和21個(gè)的平均數(shù),第一組8個(gè)數(shù)第二組15個(gè)數(shù),所以中位數(shù)應(yīng)該在148~153cm組,故選項(xiàng)A錯(cuò);
(2)由170.4-151.8=18.6cm,得估計(jì)該校九年級(jí)男生的平均身高比六年級(jí)的平均身高高出18.6cm,故選項(xiàng)B正確;
(3)因?yàn)榈谝唤M有2個(gè)數(shù),第二組有12個(gè),第三組有14個(gè),故中位數(shù)落在第168~173cm組,故選項(xiàng)C正確;
(4)因?yàn)榫拍昙?jí)身高不低于158cm但低于163cm的男生有2位,所以所占百分比是約= 5%,故選項(xiàng)D正確..
故選:A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,點(diǎn)P為線段AD上的一個(gè)動(dòng)點(diǎn),PE⊥AD交BC的延長線于點(diǎn)E.
(1)若∠B=35°,∠ACB=85°,求∠E得度數(shù).
(2)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),設(shè)∠B=α,∠ACB=β(β>α),求∠E得大。ㄓ煤α、β的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)為,過點(diǎn)作不軸的垂線交直于點(diǎn)以原點(diǎn)為圓心,的長為半徑斷弧交軸正半軸于點(diǎn);再過點(diǎn)作軸的垂線交直線于點(diǎn),以原點(diǎn)為圓心,以的長為半徑畫弧交軸正半軸于點(diǎn);…按此作法進(jìn)行下去,則的長是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=9,AB=12,BC=15,P為BC邊上一動(dòng)點(diǎn),PG⊥AC于點(diǎn)G,PH⊥AB于點(diǎn)H.
(1)求證:四邊形AGPH是矩形;
(2)在點(diǎn)P的運(yùn)動(dòng)過程中,GH的長度是否存在最小值?若存在,請(qǐng)求出最小值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】具備下列條件的三角形中,不是直角三角形的是( )
A. ∠A+∠B=∠C B. ∠B=∠C=∠A
C. ∠A=90°-∠B D. ∠A-∠B=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,對(duì)角線的垂直平分線與相交于點(diǎn),與相交于點(diǎn),連接,.求證:四邊形是菱形;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,斜邊AB邊上的高CD與角平分線AE交于點(diǎn)F,經(jīng)過垂足D的直線分別交直線CA,BC于點(diǎn)M,N.
(1)若AC=3,BC=4,AB=5,求CD的長;
(2)當(dāng)∠AMN=32°,∠B=38°時(shí),求∠MDB的度數(shù);
(3)當(dāng)∠AMN=∠BDN時(shí),寫出圖中所有與∠CDN相等的角,并選擇其中一組進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)分別為A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).
(1)把△ABC向上平移3個(gè)單位后得到△A1B1C1,請(qǐng)畫出△A1B1C1并寫出點(diǎn)B1的坐標(biāo);
(2)已知點(diǎn)A與點(diǎn)A2(2,1)關(guān)于直線l成軸對(duì)稱,請(qǐng)畫出直線l及△ABC關(guān)于直線l對(duì)稱的△A2B2C2,并直接寫出直線l的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)七年級(jí)開展演講比賽,學(xué)校決定購買一些筆記本和鋼筆作為獎(jiǎng)品.現(xiàn)了解情況如下:甲、乙兩家商店出售兩種同樣品牌的筆記本和鋼筆.筆記本定價(jià)為每本20元,鋼筆每支定價(jià)5元,經(jīng)洽談后,甲店每買一本筆記本贈(zèng)一支鋼筆;乙店全部按定價(jià)的9折優(yōu)惠.七年級(jí)需筆記本20本,鋼筆若干支(不小于20支).問:
(1)如果購買鋼筆(不小于20)支,則在甲店購買需付款 ______ 元,在乙店購買需付款 _______________ 元.(用x的代數(shù)式表示)
(2)當(dāng)購買鋼筆多少支時(shí),在兩店購買付款一樣?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com