【題目】在邊AB上有一點(點不與點、點重合),過點作直線截,使截得的三角形與相似,滿足條件的直線共有( )
A. 2條 B. 3條 C. 4條 D. 5條
【答案】B
【解析】
點P在AB邊上,根據(jù)相似三角形的判定方法進(jìn)行分析,即可得到有幾條這樣的直線.
滿足條件的直線有3條,如圖所示.
第一個,點P在邊AB上,過點P作PD∥AC,根據(jù)平行于三角形的一邊的直線與另一邊相交,所構(gòu)成的三角形與原三角形相似,得到△BPD∽△BAC;
第二個,點P在AB邊上,過P作PD∥BC,根據(jù)平行于三角形的一邊的直線與另一邊相交,所構(gòu)成的三角形與原三角形相似,得到△APD∽△ABC;
第三個,點P在邊AB上,過點P作PD⊥AB,根據(jù)有兩組角對應(yīng)相等的兩個三角形相似,得到△APD∽△ACB;
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李以每千克0.8元的價格從批發(fā)市場購進(jìn)若干千克的西瓜到市場去銷售,在銷售了部分西瓜之后,余下的每千克降價0.4元,全部售完,銷售金額與西瓜的千克數(shù)之間的關(guān)系如圖所示,那么小李賺了( )
A. 32元B. 36元C. 38元D. 44元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,以直線x=對稱軸的拋物線y=ax2+bx+c與直線l:y=kx+m(k>0)交于A(1,1),B兩點,與y軸交于C(0,5),直線l與y軸交于點D.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)直線l與拋物線的對稱軸的交點為F,G是拋物線上位于對稱軸右側(cè)的一點,若,且△BCG與△BCD面積相等,求點G的坐標(biāo);
(3)若在x軸上有且僅有一點P,使∠APB=90°,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料并完成任務(wù):
“最短路徑問題”是數(shù)學(xué)中一類具有挑戰(zhàn)性的問題.其實,數(shù)學(xué)史上也有不少相關(guān)的故事,如下即為其中較為經(jīng)典的一則:古希臘有一位久負(fù)盛名的學(xué)者,名叫海倫.他精通數(shù)學(xué)、物理,聰慧過人.有一天,一位將軍向他請教一個問題:如圖1,將軍從甲地騎馬出發(fā),要到河邊讓馬飲水,然后再回到乙地的馬棚,為使馬走的路程最短,應(yīng)該讓馬在什么地方飲水?
海倫認(rèn)為以河邊為鏡面,畫出甲地的鏡像點(垂直河邊的等距離點),然后連接乙地和甲地的鏡像點,會跟河邊相交一點,這個點就是馬飲水的地方,馬走的路程最短(兩點之間直線距離最短).
任務(wù):
(1)請你幫海倫在圖1的位置完成作圖,并標(biāo)出馬飲水的地點(畫出草圖即可);
(2)如圖2,的三個頂點的坐標(biāo)分別為,,.請你在軸上找一點,使得最小,并直接寫出點的坐標(biāo)(保留作圖痕跡);
應(yīng)用:
(3)如圖3,圓柱形容器高為,底面周長為,在杯內(nèi)壁離杯底的點處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿處的點處,點與的水平距離等于底面直徑,求螞蟻從外壁處到達(dá)內(nèi)壁處的最短距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某市2019年11月21日---11月27日最高氣溫走勢圖,則下列說法不正確的是( )
A.21日---22日的最高氣溫呈上升趨勢
B.這7天中,23日的最高氣溫高于其他6天的的最高氣溫
C.23---25日的最高氣溫呈下降趨勢
D.相鄰兩天中,24日---25日的最高氣溫變化最大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,D,E分別在AB,AC上,AD=AE,將△ADE繞點A逆時針任意旋轉(zhuǎn).
(1)發(fā)現(xiàn):如圖2,連結(jié)BD,CE,若∠BAC=60°,D點恰在線段BE上,則∠BEC= °;
(2)探究:如圖3,連結(jié)BD,CE,并交于點F,求證:∠BFC=∠BAC;
(3)拓展:如圖4,若∠BAC=90°,AB=5,AD=2,連結(jié)CD,BE,請直接寫出四邊形BCDE的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD的對角線交于點O,點E在邊BC的延長線上,且OE=OB,連接DE.
(1)求證:△BDE是直角三角形;
(2)如果OE⊥CD,試判斷△BDE與△DCE是否相似,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一枚均勻的正方體骰子,六個面分別標(biāo)有數(shù)字:1,2,3,4,5,6.如果用小剛拋擲正方體骰子朝上的數(shù)字x,小強(qiáng)拋擲正方體骰子朝上的數(shù)字y來確定點P(x,y),那么他們各拋擲一次所確定的點P落在已知直線y=﹣2x+7圖象上的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com