【題目】如圖、相交于點于點.

1)求證:;

2)求證:.

【答案】(1)見解析;(2)見解析.

【解析】

1)根據(jù)SAS即可判定△ABD≌△ACE,可得∠ABD=∠ACE,再根據(jù)∠ABC-∠ABD=∠ACB-∠ACE,可得∠OBC=∠OCB,進而得到OB=OC;
2)根據(jù)SAS即可判定△ABO≌△ACO,可得∠BAO=∠CAO,又△ABC為等腰三角形,則,

1)在△ABD△ACE

∴△ABD≌△ACE

∴∠ABD=∠ACE

∴∠ABC=∠ACB

∴∠OBF=∠OCF

∴OB=OC

2)在△ABO△ACO

∴△ABO≌△ACO

∴∠BAF=∠CAF

∵△ABC為等腰三角形

∴AF⊥BC,BF=CF(等腰三角形三線合一).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】高空的氣溫與距地面的高度有關,某地距地面的高度每升高1km,氣溫下降6℃,已知地面氣溫為20.

(1)寫出該地空中氣溫T()與高度h(km)之間的函數(shù)表達式.

(2)求距離地面上4km處的氣溫T.

(3)求氣溫為-16℃處距地面的高度h.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在半徑為2cm,圓心角為90°的扇形OAB中,分別以OA、OB為直徑作半圓,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,,,、分別為,上的兩動點,從點開始以的速度向點運動,從點開始以的速度向點運動,當一點到達終點時,、兩點就同時停止運動.設運動時間為

(1)的代數(shù)式分別表示的長;

(2)的面積為

的面積的關系式;

時,的面積是多少?

(3)為多少秒時,以點、為頂點的三角形與相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象經(jīng)過點(﹣1,2),點A是該圖象第一象限分支上的動點,連結AO并延長交另一分支于點B,以AB為斜邊作等腰直角三角形ABC,頂點C在第四象限,ACx軸交于點D,當時,則點C的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索規(guī)律:下列圖案是山西晉商大院窗格的一部分,其中“○”代表窗紙上所貼的剪紙,隨著基本圖案的增加所貼剪紙“○”的總個數(shù)也在發(fā)生變化.

1)填寫下表:

個圖案

1

2

3

4

……

“○”的總個數(shù)

……

2)請你寫出第個圖案中“○”的總個數(shù)之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】AB上有一點(點不與點、點重合),過點作直線截,使截得的三角形與相似,滿足條件的直線共有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學課外興趣活動小組準備圍建一個矩形花草園,其中一邊靠墻,另外三邊周長為米的籬笆圍成.已知墻長為米(如圖所示),設這個花草園垂直于墻的一邊長為米.

若花草園的面積為平方米,求

若平行于墻的一邊長不小于米,這個花草園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;

當這個花草園的面積不小于平方米時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O′在第一象限,⊙O′x軸相切于H點,與y軸相交于A(0,2),B(0,8),則點O′的坐標是( 。

A. (6,4) B. (4,6) C. (5,4) D. (4,5)

查看答案和解析>>

同步練習冊答案