【題目】(1)如圖所示是一條線段,AB的長為10厘米,MN的長為2厘米,假設(shè)可以隨意在這條線段上取一點,求這個點取在線段MN上的概率.

(2)如圖是一個木制圓盤,圖中兩同心圓,其中大圓直徑為20cm,小圓的直徑為10cm,一只小鳥自由自在地在空中飛行,求小鳥停在小圓內(nèi)(陰影部分)的概率是   

【答案】(1);(2)

【解析】

(1)MN的長為2,AB的長為10,據(jù)此可以計算概率(2)先計算大圓的面積,再計算小圓的面積,最后就可以算出結(jié)果.

(1)AB間距離為10,MN的長為2,

故以隨意在這條線段上取一個點,

那么這個點取在線段MN上的概率為

(2)因為大圓的面積為:

小圓的面積為:

所以小鳥停在小圓內(nèi)(陰影部分)的概率是,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的12×12網(wǎng)格中建立平面直角坐標(biāo)系,格點△ABC(頂點是網(wǎng)格線的交點)的坐標(biāo)分別是A(﹣2,2),B(﹣3,1),C(﹣1,0).

(1)將△ABC繞點O逆時針旋轉(zhuǎn)90°得到△DEF,畫出△DEF;

(2)以O為位似中心,將△ABC放大為原來的2倍,在網(wǎng)格內(nèi)畫出放大后的△A1B1C1,若P(xy)為△ABC中的任意一點,這次變換后的對應(yīng)點P1的坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCACD中,∠B=D,tanB=,BC=5,CD=3,BCA=90°﹣BCD,則AD=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A﹣1,0)、C03),與x軸交于另一點B,拋物線的頂點為D

1)求此二次函數(shù)解析式;

2)連接DC、BC、DB,求證:△BCD是直角三角形;

3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的半徑為2,點A的坐標(biāo)為(2,2),直線AB為O的切線,B為切點.則B點的坐標(biāo)為( 。

A. (﹣, B. (﹣,1) C. (﹣, D. (﹣1,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AB⊙O的直徑,PA⊙O相切于點A,BP⊙O相交于點D,C⊙O上的一點,分別連接CB、CD,∠BCD60°.

(1)求∠ABD的度數(shù);

(2)AB6,求PD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+cx軸交于點A(﹣1,0),頂點坐標(biāo)(1,n),y軸的交點在(0,2),(0,3)之間(包含端點),則下列結(jié)論:①3a+b<0;②﹣1≤a≤﹣;③對于任意實數(shù)m,a+bam2+bm總成立;關(guān)于x的方程ax2+bx+cn﹣1有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣2x2+4xx軸交于點O、A,把拋物線在x軸及其上方的部分記為C1,將C1y鈾為對稱軸作軸對稱得到C2,C2x軸交于點B,若直線yx+mC1,C2共有3個不同的交點,則m的取值范圍是(

A. 0<m< B. m

C. 0m D. mm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+c的對稱軸是x=﹣1,且過點(,0),有下列結(jié)論:abc>0;②a﹣2b+4c=0;③25a+4c=10b;④3b+2c>0;⑤abmamb);其中所有錯誤的結(jié)論有(  )個

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案