【題目】如圖,二次函數(shù)的圖象經(jīng)過,,三點(diǎn).
(1)求該二次函數(shù)的解析式;
(2)點(diǎn)是線段上的動(dòng)點(diǎn)(點(diǎn)與線段的端點(diǎn)不重合),若與相似,求點(diǎn)的坐標(biāo).
【答案】(1);(2)點(diǎn)的坐標(biāo)為
【解析】
(1)由A、B、C三點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線的解析式;
(2)可求得直線AC的解析式,設(shè)G(k,-2k-2),可表示出AB、BC、AG的長,由條件可知只有△AGB∽△ABC,再利用相似三角形的性質(zhì)可求得k的值,從而可求得G點(diǎn)坐標(biāo).
(1)∵二次函數(shù)的圖象經(jīng)過,兩點(diǎn),
∴設(shè)二次函數(shù)的解析式為.
∵二次函數(shù)的圖象經(jīng)過點(diǎn),
,解得.
∴二次函數(shù)的解析式為,即.
(2)設(shè)直線的函數(shù)解析式為,
把的坐標(biāo)代入,可得解得
∴直線的函數(shù)解析式為.
設(shè)點(diǎn)的坐標(biāo)為.
點(diǎn)與點(diǎn)不重合,
與相似只有這一種情況.
由,得.
,,
,
解得或(舍去),
∴點(diǎn)的坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某村耕地總面積為50公頃,且該村人均耕地面積y(單位:公頃/人)與總?cè)丝趚(單位:人)的函數(shù)圖象如圖所示,則下列說法正確的是( )
A. 該村人均耕地面積隨總?cè)丝诘脑龆喽龆?/span>
B. 該村人均耕地面積y與總?cè)丝趚成正比例
C. 若該村人均耕地面積為2公頃,則總?cè)丝谟?00人
D. 當(dāng)該村總?cè)丝跒?0人時(shí),人均耕地面積為1公頃
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①平分弦的直徑垂直于弦;②在n次隨機(jī)實(shí)驗(yàn)中,事件A出現(xiàn)m次,則事件A發(fā)生的頻率,就是事件A的概率;③各角相等的圓外切多邊形一定是正多邊形;④各角相等的圓內(nèi)接多邊形一定是正多邊形;⑤若一個(gè)事件可能發(fā)生的結(jié)果共有n種,則每一種結(jié)果發(fā)生的可能性是.其中正確的個(gè)數(shù)( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE
(1)求證:CE=AD
(2)當(dāng)點(diǎn)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明理由
(3)若D為AB的中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F.若AC=3,AB=5,則CE的長為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE丄AB,垂足為D,EF//AC,
(1)求的度數(shù);
(2)連接BE,若BE同時(shí)平分和,問EF與BF垂直嗎? 為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,弦垂直于直徑,垂足為,連結(jié),將沿翻轉(zhuǎn)得到,直線與直線相交于點(diǎn).
(1)求證:是的切線;
(2)若為的中點(diǎn),①求證:四邊形是菱形;②若,求的半徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,A(1,0)、B(0,2),雙曲線y=(x>0)
(1)若將線段AB繞A點(diǎn)順時(shí)針旋轉(zhuǎn)90°后B的對(duì)應(yīng)點(diǎn)恰好落在雙曲線y=(x>0)上
①則k的值為 ;
②將直線AB平移與雙曲線y=(x>0)交于E、F,EF的中點(diǎn)為M(a,b),求的值;
(2)將直線AB平移與雙曲線y=(x>0)交于E、F,連接AE.若AB⊥AE,且EF=2AB,如圖2,直接寫出k的值 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為直角梯形, , ,.點(diǎn)從出發(fā)以每秒2個(gè)單位長度的速度向運(yùn)動(dòng);點(diǎn)從同時(shí)出發(fā),以每秒1個(gè)單位長度的速度向運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過點(diǎn)作垂直軸于點(diǎn),連接交于,連接.
(1) 求的面積與運(yùn)動(dòng)時(shí)間的函數(shù)關(guān)系式, 并寫出自變量的取值范圍, 當(dāng)為何值時(shí),的值最大?
(2)是否存在點(diǎn),使得為直角三角形?若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.
(3) 當(dāng)為以為底的等腰三角形時(shí),求值.
(4) 是否存在這樣的值,使直線將的周長和面積同時(shí)平分?若存在,求出值,若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com