【題目】如圖①,已知點(diǎn)A在反比例函數(shù)(x>0)的圖像上,點(diǎn)B在經(jīng)過點(diǎn)(-2,1)的反比例函數(shù)(x<0)的圖像上,連結(jié)OA,OB,AB.
(1)求k的值;
(2)若∠AOB=90°,求∠OAB的度數(shù);
(3)將反比例函數(shù)(x>0)的圖像繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°得到曲線l,過點(diǎn)E ,F的直線與曲線l相交于點(diǎn)M,N,如圖②所示,求△OMN的面積.
【答案】(1)-2;(2)30°;(3)8
【解析】
(1)把點(diǎn)(-2,1)代入反比例函數(shù)即可求出k的值;
(2)過點(diǎn)B作BC⊥x軸,過點(diǎn)A作AD⊥x軸,設(shè)點(diǎn)B(a,-),點(diǎn)A(b,)設(shè)點(diǎn)B(a,-),點(diǎn)A(b,)則CO=-a,BC=-,AD=,OD=b,證得△BCO∽△ODA故
得出ab=-2,求得 tan∠BAO=,故∠BAO=30°;
(3)由點(diǎn)E ,F,得OE⊥OF建立新的坐標(biāo)系,OF為x’軸,OE為y’軸,在新的坐標(biāo)系中,E(0,8),F(4,0)求得直線EF的解析式為y’=-2x’+8,聯(lián)立兩函數(shù)解得M(1,6),N(3,2),即可求出△OMN的面積.
(1)∵把點(diǎn)(-2,1)代入反比例函數(shù)(x<0),
∴k=-2×1=-2,
(2)如圖,過點(diǎn)B作BC⊥x軸,過點(diǎn)A作AD⊥x軸,
設(shè)點(diǎn)B(a,-),點(diǎn)A(b,)
∴CO=-a,BC=-,AD=,OD=b
∵∠AOB=90°,
∴∠BOC+∠AOD=90°,且∠BOC+∠CBO=90°,
∴∠AOD=∠CBO,且∠BCO=∠ADO=90°
∴△BCO∽△ODA
∴
∴
∴ab=-2
∴
∴tan∠BAO=
∴∠BAO=30°
(3)∵點(diǎn)E ,F
∴OE⊥OF
建立如圖2新的坐標(biāo)系,OF為x’軸,OE為y’軸,
在新的坐標(biāo)系中,E(0,8),F(4,0)代入y’=kx’+b
求得直線EF的解析式為y’=-2x’+8
由
解得或
∴M(1,6),N(3,2)
∴S△OMN= S△OFM- S△OFN=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△ADE是有公共頂點(diǎn)的三角形,∠BAC=∠DAE=90°,點(diǎn)P為射線BD,CE的交點(diǎn).
(1) ①如圖1,∠ADE=∠ABC=45°,求證:∠ABD=∠ACE.
②如圖2,∠ADE=∠ABC=30°,①中的結(jié)論是否成立?請說明理由.
(2)在(1) ①的條件下,AB=6,AD=4,若把△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)∠EAC=90°時(shí),畫圖并求PB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點(diǎn)A、B,若∠AOB=45°,則△AOB的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)y=x+2的圖象與函數(shù)y=(k≠0)的圖象交于A、B兩點(diǎn),連接BO并延長交函數(shù)y=(k≠0)的圖象于點(diǎn)C,連接AC,若△ABC的面積為8.則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識(shí),求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(a,﹣)在直線y=﹣上,AB∥y軸,且點(diǎn)B的縱坐標(biāo)為1,雙曲線y=經(jīng)過點(diǎn)B.
(1)求a的值及雙曲線y=的解析式;
(2)經(jīng)過點(diǎn)B的直線與雙曲線y=的另一個(gè)交點(diǎn)為點(diǎn)C,且△ABC的面積為.
①求直線BC的解析式;
②過點(diǎn)B作BD∥x軸交直線y=﹣于點(diǎn)D,點(diǎn)P是直線BC上的一個(gè)動(dòng)點(diǎn).若將△BDP以它的一邊為對稱軸進(jìn)行翻折,翻折前后的兩個(gè)三角形所組成的四邊形為正方形,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長均為1的正方形網(wǎng)格紙上有和,頂點(diǎn)A、B,C,D、E、F均在格點(diǎn)上,如果是由繞著某點(diǎn)O旋轉(zhuǎn)得到的,點(diǎn)的對應(yīng)點(diǎn)是點(diǎn)D,點(diǎn)C的對應(yīng)點(diǎn)是點(diǎn)請按要求完成以下操作或運(yùn)算:
在圖上找到點(diǎn)O的位置不寫作法,但要標(biāo)出字母,并寫出點(diǎn)O的坐標(biāo);
求點(diǎn)B繞著點(diǎn)O順時(shí)針旋轉(zhuǎn)到點(diǎn)E所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,點(diǎn)M在x軸的正半軸上,⊙M交x軸于A、B兩點(diǎn),交y軸C、D于兩點(diǎn),且C為弧AE的中點(diǎn),AE交y軸于點(diǎn)G點(diǎn),若點(diǎn)C的坐標(biāo)為(0,2).
(1)連接MG、BC,求證:MG∥BC;
(2)若CE∥AB,直線y=kx﹣1(k≠0)將四邊形ACEB面積二等分,求k的值;
(3)如圖2,過O、P(2,2)作⊙O1交x軸正半軸于G,交y軸負(fù)半軸于H,I為△GOH的內(nèi)心,過I作IN⊥GH于N,當(dāng)⊙O1的大小變化時(shí),試說明GN﹣NH的值不變并求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A、B兩點(diǎn),頂點(diǎn)C的縱坐標(biāo)為﹣2,現(xiàn)將拋物線向右平移2個(gè)單位,得到拋物線 ,則下列結(jié)論:①a﹣b+c>0;②b>0;③陰影部分的面積為4;④若c=﹣1,則.其中正確的是_____(寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com