【題目】拋物線與x軸交于A,B兩點(點A在點B的左邊),與y軸正半軸交于點C.
(1)如圖1,若A(-1,0),B(3,0),
① 求拋物線的解析式;
② P為拋物線上一點,連接AC,PC,若∠PCO=3∠ACO,求點P的橫坐標;
(2)如圖2,D為x軸下方拋物線上一點,連DA,DB,若∠BDA+2∠BAD=90°,求點D的縱坐標.
【答案】(1)①y=-x2+2x+3②(2)-1
【解析】(1)①把A、B的坐標代入解析式,解方程組即可得到結論;
②延長CP交x軸于點E,在x軸上取點D使CD=CA,作EN⊥CD交CD的延長線于N.由CD=CA ,OC⊥AD,得到∠DCO=∠ACO.由∠PCO=3∠ACO,得到∠ACD=∠ECD,從而有tan∠ACD=tan∠ECD,
,即可得出AI、CI的長,進而得到.設EN=3x,則CN=4x,由tan∠CDO=tan∠EDN,得到,故設DN=x,則CD=CN-DN=3x=,解方程即可得出E的坐標,進而求出CE的直線解析式,聯(lián)立解方程組即可得到結論;
(2)作DI⊥x軸,垂足為I.可以證明△EBD∽△DBC,由相似三角形對應邊成比例得到,
即,整理得.令y=0,得:.
故,從而得到.由,得到,解方程即可得到結論.
(1)①把A(-1,0),B(3,0)代入得:
,解得:,
∴
②延長CP交x軸于點E,在x軸上取點D使CD=CA,作EN⊥CD交CD的延長線于N.
∵CD=CA ,OC⊥AD,∴ ∠DCO=∠ACO.
∵∠PCO=3∠ACO,∴∠ACD=∠ECD,∴tan∠ACD=tan∠ECD,
∴,AI=,
∴CI=,∴.
設EN=3x,則CN=4x.
∵tan∠CDO=tan∠EDN,
∴,∴DN=x,∴CD=CN-DN=3x=,
∴,∴DE= ,E(,0).
CE的直線解析式為:,
,解得:.
點P的橫坐標 .
(2)作DI⊥x軸,垂足為I.
∵∠BDA+2∠BAD=90°,∴∠DBI+∠BAD=90°.
∵∠BDI+∠DBI=90°,∴∠BAD=∠BDI.
∵∠BID=∠DIA,∴△EBD∽△DBC,∴,
∴,
∴.
令y=0,得:.
∴,∴.
∵,
∴,
解得:yD=0或-1.
∵D為x軸下方一點,
∴,
∴D的縱坐標-1 .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E點.
(1)當∠BDA=115°時,∠BAD=___°,∠DEC=___°;
(2)當DC等于多少時,△ABD與△DCE全等?請說明理由;
(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù);若不可以,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長為( 。
A. 8 B. 8 C. 4 D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了保證端午龍舟賽在我市漢江水域順利舉辦,某部門工作人員乘快艇到漢江水域考察水情,以每秒10米的速度沿平行于岸邊的賽道AB由西向東行駛.在A處測得岸邊一建筑物P在北偏東30°方向上,繼續(xù)行駛40秒到達B處時,測得建筑物P在北偏西60°方向上,如圖所示,求建筑物P到賽道AB的距離(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=15,點D是邊BC上一動點(不與B、C重合),∠ADE=∠B=α,DE交AC于點E,且tanα=有以下的結論:① △ADE∽△ACD;② 當CD=9時,△ACD與△DBE全等;③ △BDE為直角三角形時,BD為12或;④ 0<BE≤,其中正確的結論是___________(填入正確結論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內接于圓,對角線AC與BD相交于點E,F(xiàn)在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.
求證:
(1)CD⊥DF;
(2)BC=2CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李明到離家2.1千米的學校參加初三聯(lián)歡會,到學校時發(fā)現(xiàn)演出道具還放在家中,此時距聯(lián)歡會開始還有42分鐘,于是他立即勻速步行回家,在家拿道具用了1分鐘,然后立即勻速騎自行車返回學校.已知李明騎自行車到學校比他從學校步行到家用時少20分鐘,且騎自行車的速度是步行速度的3倍.
(1)李明步行的速度(單位:米/分)是多少?
(2)李明能否在聯(lián)歡會開始前趕到學校?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=2AC,點A(2,0)、B(0,4),點C在第一象限內,雙曲線y=(x>0)經(jīng)過點C.將△ABC沿y軸向上平移m個單位長度,使點A恰好落在雙曲線上,則m的值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com