【題目】如圖,在等邊△ABC中,點(diǎn)D為△ABC內(nèi)的一點(diǎn),∠ADB=120°,∠ADC=90°,將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得△ACE,連接DE.

(1)求證:AD=DE;
(2)求∠DCE的度數(shù);
(3)若BD=1,求AD,CD的長.

【答案】
(1)證明:∵將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得△ACE

∴△ABD≌△ACE,∠BAC=∠DAE,

∴AD=AE,BD=CE,∠AEC=∠ADB=120°,

∵△ABC為等邊三角形

∴∠BAC=60°

∴∠DAE=60°

∴△ADE為等邊三角形,

∴AD=DE


(2)∠ADC=90°,∠AEC=120°,∠DAE=60°

∴∠DCE=360°﹣∠ADC﹣∠AEC﹣∠DAE=90°


(3)∵△ADE為等邊三角形

∴∠ADE=60°

∴∠CDE=∠ADC﹣∠ADE=30°

又∵∠DCE=90°

∴DE=2CE=2BD=2,

∴AD=DE=2

在Rt△DCE中,


【解析】(1)利用旋轉(zhuǎn)的性質(zhì)和等邊三角形的性質(zhì)先判斷出△ADE是等邊三角形即可;(2)利用四邊形的內(nèi)角和即可求出結(jié)論;(3)先求出CD,再用勾股定理即可求出結(jié)論.
【考點(diǎn)精析】利用等腰三角形的性質(zhì)和等邊三角形的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知等腰三角形的兩個(gè)底角相等(簡稱:等邊對等角);等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地下管道,若由甲隊(duì)單獨(dú)鋪設(shè),恰好在規(guī)定時(shí)間內(nèi)完成;若由乙隊(duì)單獨(dú)鋪設(shè)需要超過規(guī)定時(shí)間15天才能完成,如果先由甲、乙兩隊(duì)合做10,再由乙隊(duì)單獨(dú)鋪設(shè)正好按時(shí)完成.

(1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?

(2)已知甲隊(duì)每天的施工費(fèi)用為5000乙隊(duì)每天的施工費(fèi)用為3000,為了縮短工期以減少對居民交通的影響,工程指揮部最終決定該工程由甲、乙兩隊(duì)合做來完成,那么該工程施工費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=5,PB=12,PC=13,若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△P′AB,求點(diǎn)P與點(diǎn)P′之間的距離及∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),AE、F、C在一條直線上,AE=CF,過E、F分別作DEAC,BFAC,若AB=CD,試證明BD平分EF,若將DEC的邊EC沿AC方向移動(dòng)變?yōu)閳D(2)時(shí),其余條件不變,上述結(jié)論是否成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點(diǎn).

(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對稱軸上是否存在點(diǎn)Q,使得△QAC的周長最。咳舸嬖冢蟪鯭點(diǎn)的坐標(biāo);若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車交易市場為了解二手轎車的交易情況,將本市場去年成交的二手轎車的全部數(shù)據(jù),以二手轎車交易前的使用時(shí)間為標(biāo)準(zhǔn)分為A、B、C、D、E五類,并根據(jù)這些數(shù)據(jù)由甲,乙兩人分別繪制了下面的兩幅統(tǒng)計(jì)圖(圖都不完整).

請根據(jù)以上信息,解答下列問題:

(1)該汽車交易市場去年共交易二手轎車   輛.

(2)把這幅條形統(tǒng)計(jì)圖補(bǔ)充完整.(畫圖后請標(biāo)注相應(yīng)的數(shù)據(jù))

(3)在扇形統(tǒng)計(jì)圖中,D類二手轎車交易輛數(shù)所對應(yīng)扇形的圓心角為   度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=(x﹣1)2+n與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,﹣3),點(diǎn)D與點(diǎn)C關(guān)于拋物線的對稱軸對稱.

(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)點(diǎn)P是拋物線對稱軸上的一動(dòng)點(diǎn),當(dāng)△PAC的周長最小時(shí),求出點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q在x軸上,且∠ADQ=∠DAC,請直接寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠A=65°,∠B=75°,將△ABC沿EF對折,使C點(diǎn)與C′點(diǎn)重合.當(dāng)∠1=45°時(shí),∠2=________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,拋物線y=x22mx+m2+m的頂點(diǎn)為A,與y軸交于點(diǎn)B.當(dāng)拋物線不經(jīng)過坐標(biāo)原點(diǎn)時(shí),分別作點(diǎn)A、B關(guān)于原點(diǎn)的對稱點(diǎn)C、D,連結(jié)AB、BCCD、DA

1)分別用含有m的代數(shù)式表示點(diǎn)AB的坐標(biāo).

2)判斷點(diǎn)B能否落在y軸負(fù)半軸上,并說明理由.

3)連結(jié)AC,設(shè)l=AC+BD,求lm之間的函數(shù)關(guān)系式.

4)過點(diǎn)Ay軸的垂線,交y軸于點(diǎn)P,以AP為邊作正方形APMNMNAP上方,如圖②,當(dāng)正方形APMN與四邊形ABCD重疊部分圖形為四邊形時(shí),直接寫出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案