【題目】如圖(1),A、E、F、C在一條直線上,AE=CF,過E、F分別作DE⊥AC,BF⊥AC,若AB=CD,試證明BD平分EF,若將△DEC的邊EC沿AC方向移動變?yōu)閳D(2)時,其余條件不變,上述結(jié)論是否成立?請說明理由.
【答案】(1)證明見試題解析;(2)成立.
【解析】
試題分析:(1)先利用HL判定Rt△ABF≌Rt△CDE,得出BF=DE;再利用AAS判定△BFG≌△DEG,從而得出FG=EG,即BD平分EF;
(2)結(jié)論仍然成立,同樣可以證明得到.
試題解析:(1)證明:∵DE⊥AC,BF⊥AC,∴∠DEG=∠BFE=90°,∵AE=CF,AE+EF=CF+EF,即AF=CE.在Rt△ABF和Rt△CDE中,∵AB=CD,AF=CE,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.在△BFG和△DEG中,∵∠BFG=∠DEG,∠BGF=∠DGE,BF=DE,∴△BFG≌△DEG(AAS),∴FG=EG,即BD平分EF;
(2)FG=EG,即BD平分EF的結(jié)論依然成立.
理由:如圖2,連接BE、FD.∵AE=CF,F(xiàn)E=EF,∴AF=CE,∵DE垂直于AC,BF垂直于AC,∴∠AFB=∠CED,BF∥DE,∴在Rt△ABF和Rt△CDE中,∵AF=CE,AB=CD,∴△ABF≌△CDE(HL),∴BF=DE,∴四邊形BEDF是平行四邊形,∴GE=GF,即:BD平分EF,即結(jié)論依然成立.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為2的正三角形ABC中,P0是BC邊的中點,一束光線自P0發(fā)出射到AC上的點P1后,依次反射到AB、BC上的點P2和P3(反射角等于入射角).
(1)若∠P2P3B=45°,CP1=;
(2)若 <BP3< ,則P1C長的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等邊的邊長為2,現(xiàn)將等邊放置在平面直角坐標系中,點B和原點重合,點C在x軸正方向上,直線交x軸于點D,交y軸于點E,且如圖,現(xiàn)將等邊從圖1的位置沿x軸正方向以每秒1個單位長度的速度移動,邊AB、AC分別與線段DE交于點G、如圖,同時點P從的頂點B出發(fā),以每秒2個單位長度的速度沿折線運動當點P運動到C時即停止活動,也隨之停止移動,設(shè)平移的時間為.
試求直線DE的解析式;
當點P在線段AC上運動時,設(shè)點P與點H的距離為y,求y與t的函數(shù)關(guān)系式,并寫出定義域;
當點P在線段AB上運動時,中恰好有一個角的度數(shù)為,請直接寫出t的值,不必寫過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校去年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費2400元,購買乙種足球共花費1600元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元.
(1)求購買一個甲種足球、一個乙種足球各需多少元;
(2)今年學校為編排“足球操”,決定再次購買甲、乙兩種足球共50個.如果兩種足球的單價沒有改變,而此次購買甲、乙兩種足球的總費用不超過3500元,那么這所學校最少可購買多少個甲種足球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知相交直線AB和CD及另一直線MN,如果要在MN上找出與AB,CD距離相等的點,則這樣的點至少有_____個,最多有_____個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某區(qū)在實施居民用水額定管理前,對居民生活用水情況進行了調(diào)查,下表是通過簡單隨機抽樣獲得的50個家庭去年月平均用水量(單位:噸),并將調(diào)查數(shù)據(jù)進行如下整理:
4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7
4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5
3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2
5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5
4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5
頻數(shù)分布表
分組 | 劃記 | 頻數(shù) |
2.0<x≤3.5 | 正正 | 11 |
3.5<x≤5.0 | 19 | |
5.0<x≤6.5 | ||
6.5<x≤8.0 | ||
8.0<x≤9.5 | 2 | |
合計 | 50 |
(1)把上面頻數(shù)分布表和頻數(shù)分布直方圖補充完整;
(2)從直方圖中你能得到什么信息?(寫出兩條即可);
(3)為了鼓勵節(jié)約用水,要確定一個用水量的標準,超出這個標準的部分按1.5倍價格收費,若要使60%的家庭收費不受影響,你覺得家庭月均用水量應該定為多少?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當△ABC繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由;
(2)當△ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點H.
①求證:BD⊥CF;
②當AB=2,AD=3 時,求線段DH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com