【題目】已知,若,關于x的方程2x+c=1的解為-1.求代數(shù)式的值.

【答案】-34.

【解析】

根據(jù)非負數(shù)之和為0,則每個非負數(shù)都為0,解出a,b的值,然后將x=-1代入方程求出c的值,最后將代數(shù)式化簡,代入數(shù)據(jù)求值.

解:因為,

(a+1)2 ≥0

所以a+1=0,b-2=0

解得:a=-1,b=2

因為關于x的方程2x+c=1的解為-1

所以2×(-1)+c=1 ,解得c=3

因為8abc2a2b(4ab2a2b)

=8abc-2a2b-4ab2+a2b

=8abc-a2b-4ab2

a=-1,b=2,c=3代入代數(shù)式8abc-a2b-4ab2中,得

8×(-1)×2×3-(-1)2×2-4×(-1)×22

=-48-2-(-16)

=-34.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是平角,, 平分;

如圖所示,圖中小于平角的角有______.

1)求的度數(shù);

2的平分線嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求證:等腰三角形底邊中線上任意一點到兩腰的距離相等.

(1)在所給圖形的基礎上,根據(jù)題意畫出圖形.

(2)根據(jù)所畫圖形寫出已知、求證.

(3)寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°,以AB為直徑作⊙OBC于點D,EAC的中點,連接DE并延長交BA的延長線于點F

1)求證:DE是⊙O的切線;

2)若∠F=30°,O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種水泥儲存罐的容量為25立方米,它有一個輸入口和一個輸出口.從某時刻開始,只打開輸入口,勻速向儲存罐內(nèi)注入水泥,3分鐘后,再打開輸出口,勻速向運輸車輸出水泥,又經(jīng)過2.5分鐘儲存罐注滿,關閉輸入口,保持原來的輸出速度繼續(xù)向運輸車輸出水泥,當輸出的水泥總量達到8立方米時,關閉輸出口.儲存罐內(nèi)的水泥量y(立方米)與時間x(分)之間的部分函數(shù)圖象如圖所示.

(1)求每分鐘向儲存罐內(nèi)注入的水泥量.

(2)當3≤x≤5.5時,求yx之間的函數(shù)關系式.

(3)儲存罐每分鐘向運輸車輸出的水泥量是   立方米,從打開輸入口到關閉輸出口共用的時間為   分鐘.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應環(huán)保組織提出的“低碳生活”的號召,李明決定不開汽車而改騎自行車上班.有一天,李明騎自行車從家里到工廠上班,途中因自行車發(fā)生故障,修車耽誤了一段時間,車修好后繼續(xù)騎行,直至到達工廠(假設在騎自行車過程中勻速行駛).李明離家的距離(米)與離家時間(分鐘)的關系表示如下圖:

(1)李明從家出發(fā)到出現(xiàn)故障時的速度為 米/分鐘;

(2)李明修車用時 分鐘;

(3)求線段BC所對應的函數(shù)關系式(不要求寫出自變量的取值范圍).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解學生參加體育活動的情況,學校對學生進行隨機抽樣調(diào)查,其中一個問題是你平均每天參加體育活動的時間是多少,共有4個選項:A1.5小時以上;B11.5小時;C0.51小時;D0.5小時以下.圖1、2是根據(jù)調(diào)查結果繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答以下問題:

1)本次一共調(diào)查了多少名學生?

2)在圖1中將選項B的部分補充完整;

3)若該校有3000名學生,你估計全?赡苡卸嗌倜麑W生平均每天參加體育活動的時間在1小時以下.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象上,點A是該圖象第一象限分支上的動點,連結AO并延長交另一支于點B,以AB為斜邊作等腰直角△ABC,頂點C在第四象限,ACx軸交于點P,連結BP,在點A運動過程中,當BP平分∠ABC時,點A的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形ABOC的兩邊在坐標軸上,OB=1,點A在函數(shù)y=﹣(x0)的圖象上,將此矩形向右平移3個單位長度到A1B1O1C1的位置,此時點A1在函數(shù)y=(x0)的圖象上,C1O1與此圖象交于點P,則點P的縱坐標是( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案