【題目】為響應(yīng)環(huán)保組織提出的“低碳生活”的號(hào)召,李明決定不開(kāi)汽車而改騎自行車上班.有一天,李明騎自行車從家里到工廠上班,途中因自行車發(fā)生故障,修車耽誤了一段時(shí)間,車修好后繼續(xù)騎行,直至到達(dá)工廠(假設(shè)在騎自行車過(guò)程中勻速行駛).李明離家的距離(米)與離家時(shí)間(分鐘)的關(guān)系表示如下圖:
(1)李明從家出發(fā)到出現(xiàn)故障時(shí)的速度為 米/分鐘;
(2)李明修車用時(shí) 分鐘;
(3)求線段BC所對(duì)應(yīng)的函數(shù)關(guān)系式(不要求寫(xiě)出自變量的取值范圍).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)三角形三個(gè)內(nèi)角度數(shù)的比為2︰7︰4,那么這個(gè)三角形是( )
A.直角三角形
B.銳角三角形
C.鈍角三角形
D.等邊三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,高速公路BC(公路視為直線)的最高限速為120,在該公路正上方離地面20的點(diǎn)A處設(shè)置了一個(gè)測(cè)速儀,已知在點(diǎn)A測(cè)得點(diǎn)B的俯角為45°,點(diǎn)C的俯角為30°,測(cè)速儀監(jiān)測(cè)到一輛汽車從點(diǎn)B勻速行駛到點(diǎn)C所用的時(shí)間是1.5,試通過(guò)計(jì)算,判決該汽車在這段限速路上是否超速.(參考數(shù)據(jù): ≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10,BC=6,F(xiàn)點(diǎn)以2/的速度在線段AB上由A向B勻速運(yùn)動(dòng),E點(diǎn)同時(shí)以1/的速度在線段BC上由B向C勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒(0<<5).
(1)求證:△ACD∽△BAC; (2)求DC的長(zhǎng);
(3)設(shè)四邊形AFEC的面積為,求關(guān)于的函數(shù)關(guān)系式,并求出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是菱形,點(diǎn)C的坐標(biāo)為(4,0),∠AOC=60°,垂直于x軸的直線l從y軸出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度向右平移,設(shè)直線l與菱形OABC的兩邊分別交于點(diǎn)M,N(點(diǎn)M在點(diǎn)N的上方),若△OMN的面積為S,直線l的運(yùn)動(dòng)時(shí)間為t 秒(0≤t≤4),則能大致反映S與t的函數(shù)關(guān)系的圖象是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(a≠0)經(jīng)過(guò)點(diǎn)A(﹣3,0)、B(1,0)、C(﹣2,1),交y軸于點(diǎn)M.
(1)求拋物線的表達(dá)式;
(2)D為拋物線在第二象限部分上的一點(diǎn),作DE垂直x軸于點(diǎn)E,交線段AM于點(diǎn)F,求線段DF長(zhǎng)度的最大值,并求此時(shí)點(diǎn)D的坐標(biāo);
(3)拋物線上是否存在一點(diǎn)P,作PN垂直x軸于點(diǎn)N,使得以點(diǎn)P、A、N為頂點(diǎn)的三角形與△MAO相似?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
小聰遇到這樣一個(gè)有關(guān)角平分線的問(wèn)題:如圖1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6
求BC的長(zhǎng).
小聰思考:因?yàn)镃D平分∠ACB,所以可在BC邊上取點(diǎn)E,使EC=AC,連接DE.這樣很容易得到△DEC≌△DAC,經(jīng)過(guò)推理能使問(wèn)題得到解決(如圖2).
請(qǐng)回答:
(1)△BDE是
(2)BC的長(zhǎng)為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com