【題目】如圖,拋物線a≠0)經(jīng)過點(diǎn)A﹣3,0)、B1,0)、C﹣2,1),交y軸于點(diǎn)M

1)求拋物線的表達(dá)式;

2D為拋物線在第二象限部分上的一點(diǎn),作DE垂直x軸于點(diǎn)E,交線段AM于點(diǎn)F,求線段DF長度的最大值,并求此時(shí)點(diǎn)D的坐標(biāo);

3)拋物線上是否存在一點(diǎn)P,作PN垂直x軸于點(diǎn)N,使得以點(diǎn)PA、N為頂點(diǎn)的三角形與MAO相似?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.

【答案】(1

2)點(diǎn)D的坐標(biāo)為

3)滿足條件的點(diǎn)P的坐標(biāo)為(﹣8﹣15)、(2)、(10﹣39)。

【解析】

分析:1)把點(diǎn)AB、C的坐標(biāo)分別代入已知拋物線的解析式列出關(guān)于系數(shù)的三元一次方程組,通過解該方程組即可求得系數(shù)的值。

2)由(1)中的拋物線解析式易求點(diǎn)M的坐標(biāo)為(0,1).所以利用待定系數(shù)法即可求得直線AM的關(guān)系式為。由題意設(shè)點(diǎn)D的坐標(biāo)為,則點(diǎn)F的坐標(biāo)為,易求DF關(guān)于的函數(shù)表達(dá)式,根據(jù)二次函數(shù)最值原理來求線段DF的最大值。

3)對點(diǎn)P的位置進(jìn)行分類討論:點(diǎn)P分別位于第一、二、三、四象限四種情況。利用相似三角形的對應(yīng)邊成比例進(jìn)行解答。

解:(1)把A﹣3,0)、B1,0)、C﹣2,1)代入得,

.解得。

拋物線的表達(dá)式為。

2)將x=0代入拋物線表達(dá)式,得y=1點(diǎn)M的坐標(biāo)為(0,1)。

設(shè)直線MA的表達(dá)式為y=kx+b

,解得

直線MA的表達(dá)式為。

設(shè)點(diǎn)D的坐標(biāo)為,

則點(diǎn)F的坐標(biāo)為。

。

當(dāng)時(shí),DF的最大值為。

此時(shí),即點(diǎn)D的坐標(biāo)為。

3)存在點(diǎn)P,使得以點(diǎn)PA、N為頂點(diǎn)的三角形與MAO相似。

設(shè)P,

RtMAO中,AO=3MO,要使兩個(gè)三角形相似,由題意可知,點(diǎn)P不可能在第一象限。

設(shè)點(diǎn)P在第二象限時(shí),點(diǎn)P不可能在直線MN上,只能PN=3NM

,即

解得m=﹣3m=﹣8。

此時(shí)﹣3m0,此時(shí)滿足條件的點(diǎn)不存在。

當(dāng)點(diǎn)P在第三象限時(shí),

點(diǎn)P不可能在直線MN上,只能PN=3NM。

,即

解得m=﹣3(舍去)或m=﹣8。

當(dāng)m=﹣8時(shí),,此時(shí)點(diǎn)P的坐標(biāo)為(﹣8,﹣15)。

當(dāng)點(diǎn)P在第四象限時(shí),

AN=3PN時(shí),則

m2+m﹣6=0。

解得m=﹣3(舍去)或m=2。

當(dāng)m=2時(shí),,

此時(shí)點(diǎn)P的坐標(biāo)為(2,)。

PN=3NA,則,即m27m﹣30=0。

解得m=﹣3(舍去)或m=10

當(dāng)m=10時(shí),,此時(shí)點(diǎn)P的坐標(biāo)為(10,﹣39)。

綜上所述,滿足條件的點(diǎn)P的坐標(biāo)為(﹣8,﹣15)、(2,)、(10,﹣39)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】居民區(qū)內(nèi)的廣場舞引起媒體關(guān)注,遼寧都市頻道為此進(jìn)行過專訪報(bào)道.小平想了解本小區(qū)居民對廣場舞的看法,進(jìn)行了一次抽樣調(diào)查,把居民對廣場舞的看法分為四個(gè)層次:A 非常贊同;B 贊同但要有時(shí)間限制;C 無所謂;D 不贊同.并將調(diào)查結(jié)果繪制了圖1和圖2兩幅不完整的統(tǒng)計(jì)圖.

請你根據(jù)圖中提供的信息解答下列問題:

1)求本次被抽查的居民有多少人?

2)將圖1和圖2補(bǔ)充完整;

3)求圖2“C”層次所在扇形的圓心角的度數(shù);

4)估計(jì)該小區(qū)4000名居民中對廣場舞的看法表示贊同(包括A層次和B層次)的大約有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)環(huán)保組織提出的“低碳生活”的號召,李明決定不開汽車而改騎自行車上班.有一天,李明騎自行車從家里到工廠上班,途中因自行車發(fā)生故障,修車耽誤了一段時(shí)間,車修好后繼續(xù)騎行,直至到達(dá)工廠(假設(shè)在騎自行車過程中勻速行駛).李明離家的距離(米)與離家時(shí)間(分鐘)的關(guān)系表示如下圖:

(1)李明從家出發(fā)到出現(xiàn)故障時(shí)的速度為 米/分鐘;

(2)李明修車用時(shí) 分鐘;

(3)求線段BC所對應(yīng)的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為節(jié)約用電,某校于本學(xué)期初制定了詳細(xì)的用電計(jì)劃.如果實(shí)際每天比計(jì)劃多用2度電,那么本學(xué)期的用電量將會超過2 530度;如果實(shí)際每天比計(jì)劃節(jié)約2度電,那么本學(xué)期的用電量將會不超過2 200度.若本學(xué)期的在校時(shí)間按110天計(jì)算,那么學(xué)校每天用電量應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】油電混合動(dòng)力汽車是一種節(jié)油、環(huán)保的新技術(shù)汽車,某品牌油電混合動(dòng)力汽車與普通汽車的相關(guān)成本數(shù)據(jù)估算如下表:

李老師計(jì)劃購入一輛該品牌的油電混合動(dòng)力汽車,在只考慮車價(jià)和燃油成本的情況下,李老師預(yù)估了未來10年的用車成本,發(fā)現(xiàn)10年中平均每年行駛總里程達(dá)到一定公里數(shù)時(shí),選擇油電混合動(dòng)力汽車的成本不高于普通汽車.李老師預(yù)估的10年中平均每年行駛的總里程數(shù)至少為多少公里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校教職工在會議室觀看十九大開幕式,每排坐13人,則有1人無處坐,每排坐14人,則空12個(gè)座位,則這間會議室共有座位的排數(shù)是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線y(m+1)x22x+m21經(jīng)過原點(diǎn),則m_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,已知A3,4),B3,﹣1),C﹣3﹣2),D﹣23.

1)在圖上畫出四邊形ABCD,并求四邊形ABCD的面積;

2)若P為四邊形ABCD形內(nèi)一點(diǎn),已知P坐標(biāo)為(﹣11),將四邊形ABCD通過平移后,P的坐標(biāo)變?yōu)椋?/span>2,﹣2),根據(jù)平移的規(guī)則,請直接寫出四邊形ABCD平移后的四個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:x3y﹣xy= .

查看答案和解析>>

同步練習(xí)冊答案