如圖,A、B、C三點在⊙O上,
AB
=
BC
,∠1=∠2.
(1)判斷OA與BC的位置關(guān)系,并說明理由;
(2)求證:四邊形OABC是菱形;
(3)過A作⊙O的切線交CB的延長線于P,且OA=4,求△APB的周長.
(1)OABC.
理由:∵OA=OC,
∴∠1=∠3.
∵∠1=∠2,
∴∠2=∠3.
∴OABC.

(2)證明:(方法一)∵
AB
=
BC

∴∠2=∠4.
∵∠2=∠1,
∴∠1=∠4.
∴ABOC.
由(1)得∴OABC.
∴四邊形OABC是平行四邊形.
又∵OA=OC,
∴四邊形OABC是菱形.
(方法二)∵
AB
=
BC
,
∴∠2=∠4.
由(1)得∠2=∠3,
∴∠3=∠4.
在△AOC與△ABC中,∠1=∠2,AC=AC,∠3=∠4,
∴△AOC≌△ABC.
∴OA=BA,OC=BC.
又∵OA=OC,
∴OA=AB=BC=OC.
∴四邊形OABC是菱形.
(方法三)連接OB,
AB
=
BC
,
∴∠3=∠4,AB=BC.
由(1)得OABC,
∴∠3=∠5.
∴∠4=∠5.
∴BC=OC.
又∵OA=OC,
∴OA=AB=BC=OC.
∴四邊形OABC是菱形.
(方法四)連接OB,∵
AB
=
BC
,
∴∠3=∠4.
又∵OA=OC,
∴OB垂直平分AC.
由(1)得OABC.
∴∠3=∠5.
∴∠4=∠5.
∴BC=OC.
又∵∠1=∠2,
∴AC垂直平分OB.
∴AC與OB互相垂直平分,
∴四邊形OABC是菱形.

(3)∵AP與⊙O相切,
∴∠OAP=90°.
由(1)得OABC,
∴∠P=90°.
由(2)得OA=AB=4,
又∵OA=OB,
∴△OAB是等邊三角形.
∴∠OAB=60°.
∴∠BAP=30°.
在Rt△ABP中,PB=
1
2
AB=2,AP=AB×cos∠PAB=4cos30°=2
3

∴△ABP的周長為4+2+2
3
=6+2
3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O的直徑AB=4,C為圓周上一點,AC=2,過點C作⊙O的切線DC,P點為優(yōu)弧
CBA
上一動點(不與A、C重合).
(1)求∠APC與∠ACD的度數(shù);
(2)當(dāng)點P移動到CB弧的中點時,求證:四邊形OBPC是菱形.
(3)P點移動到什么位置時,△APC與△ABC全等,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA,PB是⊙O的兩條切線,A,B分別是切點,點C是
AB
上任意一點,連接OA,OB,CA,CB,∠P=70°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖,AB為⊙O的直徑,AC與⊙O相切于點A,CEAB交⊙O于D、E.求證:EB2=CD•AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,Rt△ABC中,∠C=90°,AC=6,BC=8,CD為直徑的⊙O與AB相切于E,則⊙O的半徑是( 。
A.2B.2.5C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AB為⊙O的直徑,直線BC與⊙O相切于點B,過A作ADOC交⊙O于點D,連接CD.
(1)求證:CD是⊙O的切線;
(2)若AD=2,直徑AB=6,求線段BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,直線AB、CD相交于點O,∠AOC=30°,半徑為1cm的⊙P的圓心在直線AB上,且與點O的距離為6cm.如果⊙P以1cm∕s的速度,沿由A向B的方向移動,那么______秒種后⊙P與直線CD相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,AC為⊙O的直徑且PA⊥AC,BC是⊙O的一條弦,直線PB交直線AC于點D,
DB
DP
=
DC
DO
=
2
3

(1)求證:直線PB是⊙O的切線;
(2)求cos∠BCA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC內(nèi)接于⊙O,AB=AC,直線XY切⊙O于點C,弦BDXY,AC、BD相交于點E.
(1)求證:△ABE≌△ACD;
(2)若AB=6cm,BC=4cm,求AE的長.

查看答案和解析>>

同步練習(xí)冊答案