【題目】二次函數(shù)的圖象如圖所示,則下列結(jié)論中:①;②;③;④;⑤當(dāng)時,隨的增大而增大.以上結(jié)論正確的有________(只填序號)
【答案】①②④
【解析】
①根據(jù)二次函數(shù)開口向下可判斷a的正負(fù),由對稱軸大于0可判斷b的正負(fù),由于二次函數(shù)交于y軸正半軸可判斷c的正負(fù);
②令x=2,根據(jù)圖象即可得出答案;
③對稱軸為直線x=-,根據(jù)圖象即可得出答案;
④二次函數(shù)y=ax2+bx+c與x軸有兩個交點(diǎn),即可得△>0;
⑤由圖象可知當(dāng)x<2時,y隨x的增大先增大后減。
①根據(jù)二次函數(shù)開口向下,∴a<0,對稱軸為x=>0,∴b>0,二次函數(shù)交于y軸正半軸,∴c>0,故本小題正確;
②令x=2,由圖象知:y=4a+2b+c=3,故本小題正確;
③對稱軸為直線x=,由圖象知:<2,故本小題錯誤;
④∵二次函數(shù)y=ax2+bx+c與x軸有兩個交點(diǎn),即可得△>0,∴b24ac>0,故本小題正確;
⑤由圖象可知當(dāng)x<2時,y隨x的增大先增大后減小,故本小題錯誤;
故正確的有①②④。
故答案為:①②④。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時,繪出的某一結(jié)果出現(xiàn)的頻率折線圖,則符合這一結(jié)果的實(shí)驗(yàn)可能是( 。
A. 拋一枚硬幣,出現(xiàn)正面朝上
B. 擲一個正六面體的骰子,出現(xiàn)3點(diǎn)朝上
C. 一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃
D. 從一個裝有2個紅球1個黑球的袋子中任取一球,取到的是黑球
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(-2,0),(x0,0),1<x0<2,與y軸的負(fù)半軸相交,且交點(diǎn)在(0,-2)的上方,下列結(jié)論:
①b>0;②2a<b;③2a-b-1<0;④2a+c<0.其中正確結(jié)論是 _________(填正確序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=2x2-4x-6與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C.有下列說法:①拋物線的對稱軸是x=1;②A、B兩點(diǎn)之間的距離是4;③△ABC的面積是24;④當(dāng)x<0時,y隨x的增大而減。渲,說法正確的是_________________.(只需填寫序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩棵樹的高度分別為AB=6 m,CD=8 m,兩樹的根部間的距離AC=4 m,小強(qiáng)沿著正對這兩棵樹的方向從左向右前進(jìn),如果小強(qiáng)的眼睛與地面的距離為1.6 m,當(dāng)小強(qiáng)與樹AB的距離小于多少時,就不能看到樹CD的樹頂D?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù),下列說法錯誤的是( )
A. 當(dāng)時,隨的增大而減小
B. 若圖象與軸有交點(diǎn),則
C. 當(dāng)時,不等式的解集是
D. 若將圖象向上平移個單位,再向左平移個單位后過點(diǎn),則
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種蔬菜的銷售單價y1與銷售月份x之間的關(guān)系如圖1所示,成本y2與銷售月份x之間的關(guān)系如圖2所示(圖1的圖象是線段,圖2的圖象是拋物線)
(1)已知6月份這種蔬菜的成本最低,此時出售每千克的收益是多少元?(收益=售價﹣成本)
(2)哪個月出售這種蔬菜,每千克的收益最大?簡單說明理由.
(3)已知市場部銷售該種蔬菜4、5兩個月的總收益為22萬元,且5月份的銷售量比4月份的銷售量多2萬千克,求4、5兩個月的銷售量分別是多少萬千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,點(diǎn)D,E分別在BC,AC上,且BD=CE,AD與BE相交于點(diǎn)F,
(1)證明:△ABD≌△BCE;
(2)證明:△ABE∽△FAE;
(3)若AF=7,DF=1,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸相交于點(diǎn)A(﹣3,0),B(1,0),與y軸相交于(0,﹣),頂點(diǎn)為P.
(1)求拋物線解析式;
(2)在拋物線是否存在點(diǎn)E,使△ABP的面積等于△ABE的面積?若存在,求出符合條件的點(diǎn)E的坐標(biāo);若不存在,請說明理由;
(3)坐標(biāo)平面內(nèi)是否存在點(diǎn)F,使得以A、B、P、F為頂點(diǎn)的四邊形為平行四邊形?直接寫出所有符合條件的點(diǎn)F的坐標(biāo),并求出平行四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com