【題目】如圖,已知△ABC中,AB=AC=12厘米,BC=8厘米,點D為AB的中點,如果點M在線段BC上以2厘米/秒的速度由B點向C點運動,同時,點N在線段CA上由C點向A點運動,若使△BDM與△CMN全等,則點N的運動速度應(yīng)為_____厘米/秒.
【答案】2或3
【解析】
分兩種情形討論①當(dāng)BD=CM=6,BM=CN時,△DBM≌△MCN,②當(dāng)BD=CN,BM=CM時,△DBM≌△NCM,再根據(jù)路程、時間、速度之間的關(guān)系求出點N的速度.
解:∵AB=AC,
∴∠B=∠C,
①當(dāng)BD=CM=6厘米,BM=CN時,△DBM≌△MCN,
∴BM=CN=2厘米,t==1,
∴點N運動的速度為2厘米/秒.
②當(dāng)BD=CN,BM=CM時,△DBM≌△NCM,
∴BM=CM=4厘米,t==2,CN=BD=6厘米,
∴點N的速度為:=3厘米/秒.
故點N的速度為2或3厘米/秒.
故答案為:2或3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次戰(zhàn)役中,我軍陣地與敵軍碉堡隔河相望.為了炸掉這個碉堡,需要知道碉堡與我軍陣地的距離.在不能過河測量又沒有任何測量工具的情況下,如何測得距離?
一位戰(zhàn)士的測量方法是:面向碉堡的方向站好,然后調(diào)整帽子,使視線通過帽檐正好落在碉堡的底部;然后,他轉(zhuǎn)過一個角度,保持剛才的姿勢,這時視線落在了自己所在岸的某一點上;接著,他用步測的辦法量出自己與那個點的距離,這個距離就是他與碉堡的距離。這是為什么呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若方程 (m3)xm27x+3=0 是關(guān)于x的一元二次方程,則方程( )
A.無實數(shù)根
B.有兩個相等的實數(shù)根
C.有兩個不相等的實數(shù)根
D.有一個根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC 中,∠C=90°,沿過點A的一條直線AE折疊Rt△ABC,使點C恰好落在AB邊的中點D處,則∠B的度數(shù)是( )
A. 25° B. 30° C. 40° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點A(0,4),B(6,4),將點A向右平移兩個單位得到點C,將點A向下平移3個單位得到點D.
(1)依題意在下圖中補全圖形并直接寫出三角形ABD的面積;
(2)點E是y軸上的點A下方的一個動點,連接EC,直線EC交線段BD于點F,若△DEF的面積等于三角形ACF面積的2倍.請畫出示意圖并求出E點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰△ABC中,已知AB=AC,BD⊥AC于D.
(1)若∠A=48°,求∠CBD的度數(shù);
(2)若BC=15,BD=12,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△A1B1C1是邊長為1的等邊三角形,A2為等邊△A1B1C1的中心,連接A2B1并延長到點B2 , 使A2B1=B1B2 , 以A2B2為邊作等邊△A2B2C2 , A3為等邊△A2B2C2的中心,連接A3B2并延長到點B3 , 使A3B2=B2B3 , 以A3B3為邊作等邊△A3B3C3 , 依次作下去得到等邊△AnBnCn , 則等邊△A6B6C6的邊長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com