【題目】如圖,拋物線y=―x2+(6―)x+m―3與x軸交于A(x1,0)、B(x2,0)兩點(diǎn)(x1<x2),交y軸于C點(diǎn),且x1+x2=0。
(1)求拋物線的解析式,并寫出頂點(diǎn)坐標(biāo)及對(duì)稱軸方程。
(2)在拋物線上是否存在一點(diǎn)P使△PBC≌△OBC,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由。
【答案】(1),C(0,3),對(duì)稱軸x=0;(2)不存在,理由詳見(jiàn)解析.
【解析】
1)根據(jù),可得出拋物線的對(duì)稱軸為y軸即x=0,由此可求出m的值.進(jìn)而可求出拋物線的解析式.根據(jù)拋物線的解析式即可得出其頂點(diǎn)坐標(biāo)和對(duì)稱軸方程.△PBC≌△OBC.
(2)如果△PBC≌△OBC,由于△OBC是等腰直角三角形,那么P有兩種可能:①P,O重合;②P與O關(guān)于直線BC對(duì)稱,而這兩種P點(diǎn)均不在拋物線上,因此不存在這樣的P點(diǎn).
:(1) ∵
∴6-=0
∴m=51
拋物線與y軸交于正半軸上,
∴m=6.
拋物線解析式
∴拋物線頂點(diǎn)坐標(biāo)C(3,0),拋物線對(duì)稱軸方程x=0.
(2)B點(diǎn)坐標(biāo)為(3,0),
假設(shè)存在一點(diǎn)P使△PBC≌△OBC.
因?yàn)?/span>△OBC是等腰直角三角形,BC是公共邊,
故P點(diǎn)與O點(diǎn)必關(guān)于BC所在直線對(duì)稱.點(diǎn)P坐標(biāo)是(3,3).
當(dāng)x=3時(shí),y3,即點(diǎn)P不在拋物線上,
所以不存在這樣的點(diǎn)P,使△PBC≌△OBC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形AOBC是菱形.若點(diǎn)A的坐標(biāo)是(3,4),則點(diǎn)C的坐標(biāo)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形ABCD中,∠ABC=60°,點(diǎn)P是射線BD上一動(dòng)點(diǎn),以AP為邊向右側(cè)作等邊△APE,點(diǎn)E的位置隨點(diǎn)P的位置變化而變化.
(1)如圖1,當(dāng)點(diǎn)E在菱形ABCD內(nèi)部或邊上時(shí),連接CE,BP與CE的數(shù)量關(guān)系是_________,CE與AD的位置關(guān)系是____________________;
(2)當(dāng)點(diǎn)E在菱形ABCD外部時(shí),(1)中的結(jié)論是否還成立?若成立,請(qǐng)予以證明;若不成立,請(qǐng)說(shuō)明理由(選擇圖2,圖3中的一種情況予以證明或說(shuō)理).
(3)如圖4,當(dāng)點(diǎn)P在線段BD的延長(zhǎng)線上時(shí),連接BE,若,求四邊形ADPE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我區(qū)某中學(xué)對(duì)學(xué)生會(huì)倡導(dǎo)的“獻(xiàn)愛(ài)心”捐款活動(dòng)進(jìn)行抽樣調(diào)查,被調(diào)查的學(xué)生捐款情況如圖所示。
(1)該校共調(diào)查了______名學(xué)生。
(2)捐款15元以上的學(xué)生頻率是_______。
(3)若該校共有1800名學(xué)生,估計(jì)全校學(xué)生一共捐款至少多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列五個(gè)命題中的真命題有( )
①兩條直線被第三條直線所截,同位角相等;②三角形的一個(gè)外角等于它的兩個(gè)內(nèi)角之和;③兩邊分別相等且一組內(nèi)角相等的兩個(gè)三角形全等;④有理數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng);⑤實(shí)數(shù)分為有理數(shù)、無(wú)理數(shù).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,∠ACB=90°,AC=BC,D為BC邊上的中點(diǎn),CE⊥AD于點(diǎn)E,BF∥AC交CE的延長(zhǎng)線于點(diǎn)F.
(1)求證:AC=2BF
(2)連接DF,求證:AB垂直平分DF
(3)連接AF,試判斷△ACF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來(lái),因?yàn)?/span>,所以可用、來(lái)表示的小數(shù)部分.請(qǐng)解答下列問(wèn)題:
(1)的整數(shù)部分是__________,小數(shù)部分是__________.
(2)如果的整數(shù)部分為,小數(shù)部分為,求的值.
(3)已知,其中是整數(shù),且.則求的平方根的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明到商場(chǎng)購(gòu)買某個(gè)牌子的鉛筆支,用了元(為整數(shù)).后來(lái)他又去商場(chǎng)時(shí),發(fā)現(xiàn)這種牌子的鉛筆降階,于是他比上一次多買了支鉛筆,用了元錢,那么小明兩次共買了鉛筆________支.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形的三個(gè)頂點(diǎn),,,以為頂點(diǎn)的拋物線過(guò)點(diǎn),動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位的速度沿線段向點(diǎn)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為秒,過(guò)點(diǎn)作軸交拋物線于點(diǎn),交于點(diǎn).
直接寫出點(diǎn)的坐標(biāo),并求出拋物線的解析式;
當(dāng)為何值時(shí),的面積最大?最大值為多少?
點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位的速度沿線段向點(diǎn)運(yùn)動(dòng),當(dāng)為何值時(shí),在線段上存在點(diǎn),使以,,,為頂點(diǎn)的四邊形為菱形?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com