【題目】如圖所示,在△ABC中,∠ACB=90°,AC=BC,D為BC邊上的中點,CE⊥AD于點E,BF∥AC交CE的延長線于點F.
(1)求證:AC=2BF
(2)連接DF,求證:AB垂直平分DF
(3)連接AF,試判斷△ACF的形狀,并說明理由.
【答案】(1)證明見解析;(2)證明見解析;(3)等腰三角形,理由見解析.
【解析】
(1)易證∠CDA=∠F,即可證明△ACD≌△CBF,可得CD=BF,易證AC=2CD,即可解題;
(2)連接DF交AB于G點,易證BD=BF,∠ABC=45°,根據(jù)△ACD≌△CBF,可求得∠ABF=45°,即可證明∴△DBG≌△FBG,可得DG=FG,∠DGB=∠FGB,即可求得∠DGB=∠FGB=90°,即可解題;
(3)由△CBF≌△ACD,得出CF=AD,由AB垂直平分DF,得出AF=AD,證得CF=AF,即可得出結(jié)論.
證明:(1)∵BF∥AC,且∠ACB=90°
∴BC⊥BF,
又∵CF⊥AD
∴∠DCE+∠F=90°,∠DCE+∠CDA=90°,
∴∠CDA=∠F,
在△ACD和△CBF中, ,
∴△ACD≌△CBF(AAS),
∴CD=BF,
∵點D是BC的中點,
∴AC=BC=2CD,
∴AC=2BF;
(2)連接DF交AB于G點,
∵點D是BC的中點,
∴AC=2BD,
∵AC=2BF,
∴BD=BF,
∵AC=BC,∠ACB=90°,
∴∠ABC=45°,
∵△ACD≌△CBF,
∴∠CBF=∠ACD=90°,
∴∠ABF=45°,
在△DBG和△FBG中,,
∴△DBG≌△FBG(SAS),
∴DG=FG,∠DGB=∠FGB,
∵∠DGB+∠FGB=180°,
∴∠DGB=∠FGB=90°,
∴AB垂直平分DF;
(3)連接AF
由(1)知:△CBF≌△ACD,
∴CF=AD,
由(2)知:AB垂直平分DF,
∴AF=AD,
∵CF=AD,
∴CF=AF,
∴△ACF是等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)報名參加學(xué)校秋季運動會,有以下5個項目可供選擇:徑賽項目:100 m,200 m,1 000 m(分別用A1,A2,A3表示);田賽項目:跳遠,跳高(分別用T1,T2表示).
(1)該同學(xué)從5個項目中任選一個,恰好是田賽項目的概率為_________;
(2)該同學(xué)從5個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率(請利用列表法或樹狀圖加以說明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某養(yǎng)殖戶每年的養(yǎng)殖成本包括固定成本和可變成本,其中固定成本每年均為萬元,可變成本逐年增長,已知該養(yǎng)殖戶第年的可變成本為萬元,第年的養(yǎng)殖成本為萬元,現(xiàn)在要求可變成本平均每年增長的百分率,我們可設(shè)可變成本平均的每年增長的百分率為,則可列方程為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在四邊形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,AB⊥AD,點E在CD的延長線上,且∠BAC=∠DAE.
(1)求證:AC=AE;
(2)求證:CA平分∠BCD;
(3)如圖(2),設(shè)AF是△ABC的邊BC上的高,試求CE與AF之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=―x2+(6―)x+m―3與x軸交于A(x1,0)、B(x2,0)兩點(x1<x2),交y軸于C點,且x1+x2=0。
(1)求拋物線的解析式,并寫出頂點坐標及對稱軸方程。
(2)在拋物線上是否存在一點P使△PBC≌△OBC,若存在,求出點P的坐標,若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知平行四邊形ABCD,對角線AC,BD相交于點O,∠OBC=∠OCB.
(1)求證:平行四邊形ABCD是矩形;
(2)請?zhí)砑右粋條件使矩形ABCD為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個拱形橋架可以近似看作是由等腰梯形ABD8D1和其上方的拋物線D1OD8組成.若建立如圖所示的直角坐標系,跨度AB=44米,∠A=45°,AC1=4米,點D2的坐標為(-13,-1.69),則橋架的拱高OH=________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) (a≠0)的圖象如圖所示,
有下列結(jié)論:
①a、b同號;
②當(dāng)x=1和x=3時,函數(shù)值相等;
③4a+b=0;
④當(dāng)-1<x<5時,y<0.
其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一棵樹CD的10m高處的B點有兩只猴子,它們都要到A處池塘邊喝水,其中一只猴子沿樹爬下走到離樹20m處的池塘A處,另一只猴子爬到樹頂D后直線躍入池塘的A處.如果兩只猴子所經(jīng)過的路程相等,試問這棵樹多高?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com