【題目】下列五個(gè)命題中的真命題有(

兩條直線被第三條直線所截,同位角相等;三角形的一個(gè)外角等于它的兩個(gè)內(nèi)角之和;兩邊分別相等且一組內(nèi)角相等的兩個(gè)三角形全等;有理數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng);實(shí)數(shù)分為有理數(shù)、無(wú)理數(shù).

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】A

【解析】

判斷一個(gè)命題是假命題,舉出一個(gè)反例就可以;分別對(duì)各個(gè)命題進(jìn)行判斷,假命題的舉出反例,即可得出答案.

解:①兩條直線被第三條直線所截,同位角相等;是假命題;

如圖1所示:

兩條直線AB、CD被直線EF所截,

很明顯,∠BME≠DNE;

∴①是假命題;

②三角形的一個(gè)外角等于它的兩個(gè)內(nèi)角之和;是假命題;

如圖2所示:

ACDRtABC的一個(gè)外角,∠ACD=ACB=90°,

而∠ACD≠ACB+A

∴②是假命題;

③兩邊分別相等且一組夾角相等的兩個(gè)三角形全等,是假命題;

如圖3所示:

ACDACB中,AC=AC,CD=CB,∠A=A,

ACDACB不全等

∴③是假命題;

④有理數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng),是假命題;

根據(jù)實(shí)數(shù)與數(shù)軸上的點(diǎn)的關(guān)系,實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng)

∴④是假命題;

實(shí)數(shù)分為有理數(shù)、無(wú)理數(shù),是真命題

有理數(shù)和無(wú)理數(shù)統(tǒng)稱(chēng)為實(shí)數(shù)

∴⑤是真命題

真命題共1個(gè)

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,EAB上一點(diǎn),FAD延長(zhǎng)線上一點(diǎn),且DF=BE

1)求證:CE=CF;

2)若點(diǎn)GAD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,AB=3cm,BC=5cmB=60°,GCD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn),EG的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)F,連結(jié)CE,DF

1)求證:四邊形CEDF是平行四邊形;

2當(dāng)AE= cm時(shí),四邊形CEDF是矩形;當(dāng)AE= cm時(shí),四邊形CEDF是菱形.(直接寫(xiě)出答案,不需要說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,點(diǎn)A、B分別是∠NOPMOP平分線上的點(diǎn),ABOP于點(diǎn)E,BCMN于點(diǎn)C,ADMN于點(diǎn)D,下列結(jié)論錯(cuò)誤的是(  )

A. ADBCAB B. 與∠CBO互余的角有兩個(gè)

C. AOB=90° D. 點(diǎn)OCD的中點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的正方形中,點(diǎn)A,B,C在小正方形的頂點(diǎn)上.

1)在圖中畫(huà)出與ABC關(guān)于直線l成軸對(duì)稱(chēng)的ABC

2)三角形ABC的面積為   ;

3)在直線l上找一點(diǎn)P,使PA+PB的長(zhǎng)最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=―x2+(6―)x+m―3x軸交于A(x1,0)、B(x2,0)兩點(diǎn)(x1<x2),交y軸于C點(diǎn),且x1+x2=0。

(1)求拋物線的解析式,并寫(xiě)出頂點(diǎn)坐標(biāo)及對(duì)稱(chēng)軸方程。

(2)在拋物線上是否存在一點(diǎn)P使△PBC≌△OBC,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】勾股定理在平面幾何中有著不可替代的重要地位,在我國(guó)古算書(shū)(周髀算經(jīng)》中就有若勾三,股四,則弦五的記載,如圖1是由邊長(zhǎng)均為1的小正方形和RtABC構(gòu)成的,可以用其面積關(guān)系驗(yàn)證勾股定理,將圖1按圖2所示嵌入長(zhǎng)方形LMJK,則該長(zhǎng)方形的面積為( )

A.120B.110C.100D.90

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1=2,AC=AD,增加下列條件:①AB=AE;BC=DE;③∠C=D;④∠B=E,其中能使△ABC≌△AED的條件是______________.(填寫(xiě)序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)的圖像與正比例函數(shù)的圖像都經(jīng)過(guò)點(diǎn),點(diǎn)在反比例函數(shù)的圖像上,點(diǎn)在正比例函數(shù)的圖像上.

1)求此正比例函數(shù)的解析式;

2)求線段AB的長(zhǎng);

3)求PAB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案