【題目】如圖,在四邊形ABCD中,AD∥BC,點O是對角線AC的中點,過點O作AC的垂線,分別交AD、BC于點E、F,連結(jié)AF、CE.
(1)求證:△AOE≌△COF.
(2)試判斷四邊形AFCE的形狀,并證明.
【答案】(1)詳見解析;(2)四邊形AFCE是菱形,證明詳見解析.
【解析】
(1)由平行線的性質(zhì)得出∠OAE=∠OCF.證出AO=CO.由AS證明△AOE≌△COF即可;
(2)由全等三角形的性質(zhì)得出AE=CF,證出四邊形AFCE為平行四邊形,再由EF⊥AC,即可得出結(jié)論.
(1)證明:∵AD∥BC,
∴∠OAE=∠OCF.
∵O是AC中點,
∴AO=CO.
在△AOE和△COF中,
∴△AOE≌△COF(ASA).
(2)解:四邊形AFCE為菱形,理由如下:
∵△AOE≌△COF,∴AE=CF.
又AE∥CF,
∴四邊形AECF為平行四邊形,
∵EF⊥AC,
∴平行四邊形AECF為菱形.
科目:初中數(shù)學 來源: 題型:
【題目】某校調(diào)查了若干名家長對“初中生帶手機上學”現(xiàn)象的看法,統(tǒng)計整理并制作了如下的條形與扇形統(tǒng)計圖,根據(jù)圖中提供的信息,完成以下問題:
(1)本次共調(diào)查了 名家長;扇形統(tǒng)計圖中“很贊同”所對應的圓心角是 度.已知該校共有1600名家長,則“不贊同”的家長約有 名;請補全條形統(tǒng)計圖;
(2)從“不贊同”的五位家長中(兩女三男),隨機選取兩位家長對全校家長進行“學生使用手機危害性”的專題講座,請用樹狀圖或列表法求出選中“1男1女”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點是軸上一點,其坐標為,點在軸的正半軸上.點,均在線段上,點的橫坐標為,點的橫坐標大于,在中,若軸,軸, 則稱為點,的“肩三角形.
(1)若點坐標為, 且,則點,的“肩三角形”的面積為__ ;
(2)當點,的“肩三角形”是等腰三角形時,求點的坐標;
(3)在(2)的條件下,作過,,三點的拋物線.
①若點必為拋物線上一點,求點,的“肩三角形”面積與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
②當點,的“肩三角形”面積為3,且拋物線與點,的“肩三角形”恰有兩個交點時,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,小紅家陽臺上放置了一個曬衣架.如圖2是曬衣架的側(cè)面示意圖,立桿AB.CD相交于點O,B.D兩點立于地面,經(jīng)測量:
AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,現(xiàn)將曬衣架完全穩(wěn)固張開,扣鏈EF成一條直線,且EF=32cm.
(1)求證:AC∥BD;
(2)求扣鏈EF與立桿AB的夾角∠OEF的度數(shù)(精確到0.1°);
(3)小紅的連衣裙穿在衣架后的總長度達到122cm,垂掛在曬衣架上是否會拖落到地面?請通過計算說明理由.
(參考數(shù)據(jù):sin61.9°≈0.882,cos61.9°≈0.471,
tan61.9°≈0.553;可使用科學記算器)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E,F分別是邊AD,BC的中點,AC分別交BE,DF于G,H,試判斷下列結(jié)論:①△ABE≌△CDF;②AG=GH=HC;③2EG=BG;④S△ABG:S四邊形GHDE=2:3,其中正確的結(jié)論是( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB為直徑,AD=CD,過點D作DE⊥AB于點E,連接AC交DE于點F.若sin∠CAB=,DF=5,則BC的長為( )
A.8B.10C.12D.16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線L1:過點C(0,﹣3),與拋物線L2:的一個交點為A,且點A的橫坐標為2,點P、Q分別是拋物線L1、拋物線L2上的動點.
(1)求拋物線L1對應的函數(shù)表達式;
(2)若以點A、C、P、Q為頂點的四邊形恰為平行四邊形,求出點P的坐標;
(3)設(shè)點R為拋物線L1上另一個動點,且CA平分∠PCR,若OQ∥PR,求出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐:
問題情境:矩形旋轉(zhuǎn)中的數(shù)學
已知在矩形中,,,以點為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)矩形,旋轉(zhuǎn)角為,得到矩形,點、點、點的對應點分別為點、點、點.
操作猜想:
(1)如圖①,當點落在邊上時,求線段的長度;
深入探究:
(2)如圖②,當點落在線段上時,與相交于點,連接,求線段的長度;
(3)請從,兩題中任選一題作答,我選______題.
題:如圖③,設(shè)點為邊的中點,連接,,,在矩形旋轉(zhuǎn)過程中,的面積是否存在最大值?若存在請直接寫出這個最大值;若不存在請說明理由.
題:如圖④,設(shè)點為矩形對角線交點,連接,,在矩形旋轉(zhuǎn)過程中,的面積是否存在最大值?若存在請直接寫出這個最大值;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解班級學生數(shù)學課前預習的具體情況,鄭老師對本班部分學生進行了為期一個月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類:A:很好;B:較好;C:一般;D:不達標,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)C類女生有 名,D類男生有 名,將上面條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中“課前預習不達標”對應的圓心角度數(shù)是 ;
(3)為了共同進步,鄭老師想從被調(diào)查的A類和D類學生中各隨機機抽取一位同學進行“一幫一”互助學習,請用畫樹狀圖或列表的方法求出所選兩位同學恰好是一男一女同學的概率,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com