【題目】綜合與實踐:
問題情境:矩形旋轉中的數(shù)學
已知在矩形中,,,以點為旋轉中心,逆時針旋轉矩形,旋轉角為,得到矩形,點、點、點的對應點分別為點、點、點.
操作猜想:
(1)如圖①,當點落在邊上時,求線段的長度;
深入探究:
(2)如圖②,當點落在線段上時,與相交于點,連接,求線段的長度;
(3)請從,兩題中任選一題作答,我選______題.
題:如圖③,設點為邊的中點,連接,,,在矩形旋轉過程中,的面積是否存在最大值?若存在請直接寫出這個最大值;若不存在請說明理由.
題:如圖④,設點為矩形對角線交點,連接,,在矩形旋轉過程中,的面積是否存在最大值?若存在請直接寫出這個最大值;若不存在請說明理由.
【答案】(1)CE= 2-;(2)DH=;(3)A題:存在最大值+1;B題:存在最大值.
【解析】
(1)由旋轉的性質可得AE=AB,利用勾股定理可求出DE的長,即可得CE的長;
(2)如圖,由旋轉的性質及矩形性質可得AE=CD,∠AEF=∠B=90°,根據(jù)點落在線段上可得AE⊥CF,利用HL可證明△ACD≌△CAE,可得∠CAH=∠ACH,即可證明AH=CH,在Rt△ADH中,利用勾股定理列方程求出DH的長即可;
(3)A題:如圖,連接PA,作BM⊥PE,交PE延長線于M,由點P為FG中點可得PF=PG=1,利用勾股定理可得PA=PE=,即可得出S△BEP=PE·BM=BM,可得當BM最大時,△BEP的面積最大,根據(jù)三角形的三邊關系及直角三角形的性質求出BM的最大值即可得答案;
B題:如圖,過點B作BM⊥FA,交FA延長線于M,利用勾股定理可求出AF的長,根據(jù)矩形性質可求出PF的長,可得出S△BFP=PF·BM,可得BM最大時△BFP的面積最大,利用三角形的三邊關系得出BM的最大值即可得答案.
(1)∵以點為旋轉中心,逆時針旋轉矩形,得到矩形,,,
∴AE=AB=CD=2,AD=BC=1,
∴DE==,
∴CE=CD-DE=2-.
(2)以點為旋轉中心,逆時針旋轉矩形,得到矩形,,,
∴AE=AB=CD=2,∠AEF
∵點落在線段上,
∴∠AEC=90°,
在Rt△ACD和Rt△CAE中,,
∴Rt△ACD≌Rt△CAE,
∴∠CAH=∠ACH,
∴AH=CH,
在Rt△ADH中,AH2=DH2+AD2,
∴(CD-DH)2=DH2+AD2,即(2-DH)2=DH2+12,
解得:DH=.
(3)A題:
如圖,連接PA,作BM⊥PE,交PE延長線于M,
∵點P為GF中點,
∴PG=PF=1,
∴PA=PE==,
∴S△BEP=PE·BM=BM,
∴當BM最大時,△BEP的面積最大,
∵BM≤BP,BP≤AB+AP=2+,
∴BM≤2+,即BM的最大值為2+,
∴△BEP的面積的最大值為:BM=×(2+)=+1.
B題:
如圖,過點B作BM⊥FA,交FA延長線于M,
∵AB=2,BC=1,矩形AEFG由矩形ABCD旋轉所得,
∴AF==,
∴PF=AF=,
∴S△BFP=PF·BM=BM,
∴當BM最大時,△BFP的面積最大,
∵BM≤AB,
∴BM的最大值為AB=2,
∴△BFP的面積的最大值為BM=×2=.
科目:初中數(shù)學 來源: 題型:
【題目】為測量大樓的高度,從距離大樓底部30米處的,有一條陡坡公路,車輛從沿坡度,坡面長13米的斜坡到達后,觀測到大樓的頂端的仰角為30°,則大樓的高度為( 。┟祝
(精確到0.1米,,)
A.26.0B.29.2C.31.1D.32.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,點O是對角線AC的中點,過點O作AC的垂線,分別交AD、BC于點E、F,連結AF、CE.
(1)求證:△AOE≌△COF.
(2)試判斷四邊形AFCE的形狀,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市高新區(qū)某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務,按要求必須在14天內(nèi)完成.已知每件產(chǎn)品的售價為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,y與x滿足如下關系:.
(1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為60件?
(2)設第x天生產(chǎn)的產(chǎn)品成本為P元/件,P與x的函數(shù)關系圖象如圖,工人甲第x天創(chuàng)造的利潤為W元,求W與x的函數(shù)關系式,第幾天時,利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:AB是⊙O的直徑,P是OA上一點,過點P作⊙O的非直徑的弦CD.
(1)若PA=2,PB=10,∠CPB=30°,求CD長;
(2)求證:PCPD=PAPB;
(3)設⊙O的直徑為8,若PC、PD是方程,求m的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】第十一屆全國少數(shù)民族傳統(tǒng)體育運動會于2019年9月8日至16日在鄭州舉行,據(jù)了解,該賽事每四年舉辦一屆,是我國規(guī)格最高、規(guī)模最大的綜合性民族體育盛會.其中,花炮、押加、民族式摔跤三個項目的比賽在鄭州大學主校區(qū)進行.如圖,鐘樓是鄭州大學主校區(qū)標志性建筑物之一,是鄭大的“第一高度”,寓意來自五湖四海的鄭大人的團結和凝聚.小剛站在鐘樓前C處測得鐘樓頂A的仰角為53°,小強站在對面的教學樓三樓上的D處測得鐘樓頂A的仰角為30°,此時,兩人的水平距離EC為38m.已知教學樓三樓所在的高度為10m,根據(jù)測得的數(shù)據(jù),計算鐘樓AB的高度.(結果保留整數(shù).參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,頂點為A(,1)的拋物線經(jīng)過坐標原點O,與x軸交于點B.
(1)求拋物線對應的二次函數(shù)的表達式;
(2)過B作OA的平行線交y軸于點C,交拋物線于點D,求證:△OCD≌△OAB;
(3)在x軸上找一點P,使得△PCD的周長最小,求出P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A、B是線段MN上的兩點,MN=4,MA=1,MB>1.以A為中心順時針旋轉點M,以B為中心逆時針旋轉點N,使M、N兩點重合成一點C,構成△ABC,設AB=x.若以點B為圓心,1.6為半徑作圓⊙B,使點M和點N都在⊙B外,則x的取值范圍是( )
A.1<x<2B.0.6<x<1.6C.1<x<1.6D.1<x<1.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 實施新課程改革后,學生的自主學習、合作交流能力有很大提高,張老師為了了解所教班級學生自主學習、合作交流的具體情況,對本班部分學生進行了為期半個月的跟蹤調(diào)查,并將調(diào)查結果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調(diào)查中C類女生有______名,D類男生有______名;將上面的條形統(tǒng)計圖補充完整;
(2)計算扇形統(tǒng)計圖中D所占的圓心角是______;
(3)為了共同進步,張老師想從被調(diào)查的A類和D類學生中分別選取一位同學進行“一幫一”互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com