【題目】如圖,兩幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m.AB和CD之間有一景觀池,小雙在A點測得池中噴泉處E點的俯角為42°,在C點測得E點的俯角為45°,點B、E、D在同一直線上.求兩幢建筑物之間的距離BD.(結果精確到0.1m)(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90)
科目:初中數(shù)學 來源: 題型:
【題目】△ABC和△DEF是兩個等腰直角三角形,∠A=∠D=90°,△DEF的頂點E位于邊BC的中點上.
(1)如圖1,設DE與AB交于點M,EF與AC交于點N,求證:△BEM∽△CNE;
(2)如圖2,將△DEF繞點E旋轉,使得DE與BA的延長線交于點M,EF與AC交于點N,于是,除(1)中的一對相似三角形外,能否再找出一對相似三角形并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,連接OC,過點A作AD∥OC,交BC的延長線于D,AB交OC于E,∠ABC=45°.
(1)求證:AD是⊙O的切線;
(2)若AE=,CE=3.
①求⊙O的半徑;
②求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD的內(nèi)部,將AF延長后交邊BC于點G,且,則的值為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線與軸的兩個交點分別為A(-3,0)、B(1,0),與y軸交于點D(0,3),過頂點C作CH⊥x軸于點H.
(1)求拋物線的解析式和頂點C的坐標;
(2)連結AD、CD,若點E為拋物線上一動點(點E與頂點C不重合),當△ADE與△ACD面積相等時,求點E的坐標;
(3)若點P為拋物線上一動點(點P與頂點C不重合),過點P向CD所在的直線作垂線,垂足為點Q,以P、C、Q為頂點的三角形與△ACH相似時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D、E分別是△ABC邊AB、BC上的點,AD=2BD,BE=CE,設△ADF的面積為S1,△CEF的面積為S2,若S△ABC=9,則S1﹣S2=( 。
A. B. C. 1D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD相交于點O,OE=OF.
(1)求證:△BOE≌△DOF;
(2)若BD=EF,連接DE、BF,判斷四邊形EBFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c,當x=3時,y有最小值﹣4,且圖象經(jīng)過點(﹣1,12).
(1)求此二次函數(shù)的解析式;
(2)該拋物線交x軸于點A,B(點A在點B的左側),交y軸于點C,在拋物線對稱軸上有一動點P,求PA+PC的最小值,并求當PA+PC取最小值時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從A地到B地需修一條公路,該工程由甲、乙兩隊共同完成,甲、乙兩隊分別從A地、B地同時開始修路,設修路的時間為天,未修的路程為米,圖中的折線表示甲、乙兩個工程隊從開始施工到工程結束的過程中y與x之間的函數(shù)關系,已知在開始修路5天后,甲工程隊因設備升級而停工5天,設備升級后甲工程隊每天修路比原來多,乙隊施工效率始終不變,則設備升級后甲工程隊每天修路比原來多______米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com