11.已知如圖:△ABC和△DAE中,AB=AD,∠BAD=∠BCE=135°,BC的延長(zhǎng)線交DE于點(diǎn)F,BF⊥DE.寫出線段DE、CE、BC之間的一個(gè)等量關(guān)系,并證明你的結(jié)論.

分析 根據(jù)△DAE≌△ABC得到AE=BC,DE=AC即可證明.

解答 結(jié)論:BC=DE+CE.理由如下:
證明:∵∠ECB=135°,
∴∠BCA=∠ECF=180°-∠ECB=45°,
∵∠EFC=90°,
∴∠E=90°-∠ECF=45°,
∵∠ECB=∠CAB+∠B=135°,∠DAE+CAB=135°,
∴∠DAE=∠B,
在△DAE和△ABC中,
$\left\{\begin{array}{l}{∠E=∠ACB}\\{∠DAE=∠B}\\{AD=AB}\end{array}\right.$,
∴△DAE≌△ABC,
∴DE=AC,AE=BC,
∴BC=AE=AC+CE=DE+CE.

點(diǎn)評(píng) 本題考查全等三角形的判定和性質(zhì)、三角形的外角定理,利用三角形全等是解決問(wèn)題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知13x2-6xy+y2-4x+1=0,求(x+y)2015•x2016的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.若3an-6b-2+m和-2a3m+1b2n的積與a11b15是同類項(xiàng),求m、n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知三角形的三邊長(zhǎng)分別為a=2$\sqrt{3}$-1,b=2$\sqrt{3}$+1,c=$\sqrt{26}$,判斷三角形的形狀,并求出三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,點(diǎn)P是直線l:y=-2x-2上的點(diǎn),過(guò)點(diǎn)P的另一條直線m交拋物線y=x2于A,B兩點(diǎn).
(1)若直線m的解析式為y=-x+2,求P,A,B三點(diǎn)的坐標(biāo);
(2)若點(diǎn)P的坐標(biāo)為(-2,2),當(dāng)PA=PB時(shí),求點(diǎn)A的坐標(biāo);
(3)求證:對(duì)于直線l上任意一點(diǎn)P,在拋物線上都能找到兩個(gè)不同位置的點(diǎn)A,使得PA=PB成立?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,AD,BC分別平分∠CAB,∠DBA,且∠1=∠2,試探究AC與BD的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,△ABC中,AC的垂直平分線DE交AC于E.交∠ABC的平分線于D,DF⊥BC于F.
(1)求證:①BC-AB=2CF;②BC+AB=2BF;
(2)若∠ABC=60°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.材料一:如果10b=n,那么b為n的勞格數(shù),記為b=d(n),由定義可知:10b=n與b=d(n)所表示的b、n兩個(gè)量之間的同一關(guān)系.例如:101=10,d(10)=1;
材料二:勞格數(shù)有如下運(yùn)算性質(zhì):若m、n為正數(shù),則d(mn)=d(m)+d(n)
(1)根據(jù)勞格數(shù)的定義,填空:d(102)=2,d(10-2)=-2;
(2)若d(2)=0.301,求d(4)+d(16)的值;
(3)已知d(3)=2a+b,d(9)=3a+2b+c,d(27)=6a+2b+c,證明:a=b=c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.計(jì)算:
(1)(-0.2)2011×52012×(π-3)0×(-$\frac{1}{2}$)-1
(2)1×2+2×3+3×4+…+99×100
(3)(-$\frac{3}{2}$ax4y3)÷(-$\frac{6}{5}$ax2y2)•8a2y.

查看答案和解析>>

同步練習(xí)冊(cè)答案